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Why Replicate Our Studies?




“In this experiment, the independent cell cultures are
biological replicates. The replicates at RNA samples and arrays
are technical replicates which are similar to the repeated
measurements. They are less useful for identifying
significantly expressed genes between the two treatments.
However, technical replicates are essential in experiments
designed for evaluating the technology and in identifying the
sources of variation. The variability between the duplicated
arrays estimates the variability of the procedure after RNA
extraction and the variability between the duplicated RNA
samples estimates the variability from both RNA extraction
and the array hybridization.” (Lee, pp.203-4)



1 Power: Statistical Modelling May Help
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The Marginal Table:

Yes \[o) Total % diseased
M 53 430 483 11.0%
F 15 176 191 7.9%

The Stratified Tables for the Same Data:

Younger patients Older patients
Disease status Disease
status
Yes No Total | % diseased Yes No Total % diseased
M 53 414 467 11.3% M O 16 16 0.0%
F 11 37 48 22.9% F 4 139 (143 2.8%
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DNA/Protein Sequence Alignhment Methods

* Traditional Methods:
* Global: Needleman/Wunsch method
* Local: Smith/Waterman algorithm
* End-Space Free

* Modern Methods using Hidden Markov Models




Needleman/Wunsch Global Algorithm
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Figure 2.2 The BLOSUMSO0 substitution matrix. The log-odds values have

been scaled and rounded to the nearest integer for purposes of computa-
tional efficiency. Entries on the main diagonal for identical residue pairs

are highlighted in bold.
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Figure 2.5 Above, the global dynamic programming matrix for our exam-
ple sequences, with arrows indicating traceback pointers; values on the
optimal alignment path are shown in bold. Below, a corresponding optimal
alignment, which has total score 1.



Smith/Waterman Local Alighment Method:
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Figure 2.6 Above, the local dynamic programming matrix for the example
sequences. Below, the optimal local alignment, with score 28.




End-Space Free Alignment Algorithm:

GAWGHEE
PAW-HEA

Figure 2.8 Above, the overlap dyvnamic programming matrix for the exam-
ple sequences. Below, the optimal overlap alignment, with score 23,




Using Hidden Markov Models (HMM)
for Sequence Alighment:

e Uses the EM (Expectation/Maximization) Algorithm

* http://www.nature.com/nbt/journal/v22/n10/pdf/n
bt1004-1315.pdf



Example: The Occasionally Dishonest Casino

A casino has two dice:

«  Fair die: E ﬁ
P(1)=P(2) =P(3)=P(4)=P(5)=P(6)=1/6
* Loaded die:

P(1)=P(2) =P(3) =P(4)=P(5)=1/10; P(6)=1/2
* Dealer switches between dice as:

— Prob(Fair > Loaded) =0.01

— Prob(Loaded — Fair) =0.2

— Transitions between dice obey a Markov process
Game:
1. Youbet S1
2. Youroll (always with a fair die)

3. Casino player rolls
(maybe with fair die, maybe with loaded die)
4. Highest number wins $2




An HMM for the occasionally

0.99

P(1|F)=1/6
P(2|F)=1/6
P(3|F)=1/6
P(4|F)=1/6
P(5|F)=1/6
P(6|F)=1/6

dishonest casino

0.01

0.2

0.8

P(1]L)=1/10
P(2|L)=1/10
P(3|L)=1/10
P(4|L)=1/10
P(5|L)=1/10
P(6|L) = 1/2




Question # 1 — Evaluation

GIVEN

A sequence of rolls by the casino player

124552646214614613613666166466163661636616361...

QUESTION

How likely is this sequence, given our model of how the
casino works?

This is the EVALUATION problem in HMMs



Question # 2 — Decoding

GIVEN
A sequence of rolls by the casino player

1245526462146146136136661664661636616366163...
QUESTION

What portion of the sequence was generated with the
fair die, and what portion with the loaded die?

This is the DECODING question in HMMs



Question # 3 — Learning

GIVEN
A sequence of rolls by the casino player

124552646214614613613666166466163661636616361651...

QUESTION

How “loaded” is the loaded die? How “fair” is the fair die?

How often does the casino player change from fair to
loaded, and back?

This is the LEARNING question in HMMs



HMM Article

What is a hidden Markov model?

Sean R Eddy

PRIMER

Statistical models called hidden Markov models are a recurring theme in computational biology. What are hidden

Markov models, and why are they so useful for so many different problems?

Ofien, biological sequence analysis

bilistically. Finding a best scoring answer i
one thing, but what does the score mean,
and how confident are we that the best scor-
ing answer is correct? A third issue is exten-
sibility. The moment we perfect our ad hoc
genefinder, we wish we had also modeled
translational initiation consensus, alterna-
tive splicing and a polyadenylation signal.
Too often, piling more reality onto a fragile
ad hoc program makes it collapse under its
own weight.

Hidden Markov models (HMMs) are a
formal foundation for making probabilistic
models of linear sequence ‘labeling’ prob-
!2, They provide a conceptual toolkit
for building complex models just by draw-

lems

Sean R. Eddy is at Howard Hughes Medical
Institute & Department of Genetics,
Washington University School of Medicine,
4444 Forest Park Blvd., Box 8510, Saint Louis,
Missouri 63108, USA.

e-mail: eddy@genetics.wustl.edu

decoding:

Figure 1 A toy HMM for 5" splice site recognition. See text for explanation.

ing an intuitive picture. They are at the heart
of a diverse range of programs, including
genefinding, profile searches, multiple
sequence alignment and regulatory site
identification. HMMs are the Legos of com-
putational sequence analysis.

A toy HMM: 5’ splice site recognition
As a simple example, imagine the following
caricature of a 5" splice-site recognition
problem. Assume we are given a DNA
sequence that begins in an exon, contains
one 5 splice site and ends in an intron.
The problem is to identify where the switch
from exon to intron occurred—where the
5" splice site (5°SS) is.

For us to guess intelligently, the sequences
of exons, splice sites and introns must have

different statistical properties. Let’s imagine
some simple differences: say that exons
have a uniform base composition on average
(25% each base), introns are A/T rich (say,
40% each for A/T, 10% each for C/G), and
the 5'SS consensus nucleotide is almost
always a G (say, 95% G and 5% A).

Starting from this information, we can
draw an HMM (Fig. 1). The HMM invokes
three states, one for each of the three labels
we might assign to a nucleotide: E (exon),
5 (5’SS) and 1 (intron). Fach state has its
own emission probabilities (shown above the
states), which model the base composition
of exons, introns and the consensus G at the
Ly ach state also has transition probabili-
ties (arrows), the probabilities of moving
from this state to a new state. The tran:

@

matter of putting the right label on each
residue. In gene identification, we want to
label nucleotides as exons, introns, or inter-
genic sequence. In sequence alignment, we
want to associate residues in a query
sequence with homelogous residues in a tar-
get database sequence. We can always write
an ad hoc program for any given problem,
but the same frustrating issues will always  Sequence: CTTCATGTGAAAGCAGACGTAAGTCA

recur. One is that we want to incorporate  State path: EEEEEEEEEEEEEEEEEES I 11| 111 logP PRIMER
heterogeneous sources of inform: A - - —41.22

genefinder, for instance, ought to combine
splice-site consensus, codon bias, exon/
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1 ; : -43.90
Parsing: —— -43.45
R —43.94 which we expect the states to occur: one or  probability of —41.22, which infers that the maybe we're not happy with our discrimina-
frame analysis into one scoring system. How —-4258

probabilities describe the linear order in  with G at the The best one has a log For example, in our toy splice-site model,

tron length preferences and open reading

P 2004 Nature Publishing Group http:/lwww.nature.

should these parameters be set? How should
different kinds of information be weighted?
A second issue is to interpret results proba-

more Es, one 5, one or more Is.

So, what’s hidden?

most likely 5SS position is at the fifth G
For most problems, there are so many
possible state sequences that we could not

tion power; maybe we want to add a more
realistic six-nucleotide consensus GTRAGT

at the 5 splice site. We can put a row of




Thanks for your
attention and questions



