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We have witnessed in the past years the 
rapi.d progresse~ in the hum~n genome 

. project and bIotechnologies. These 
advances result in many complex datasets associ­
ated with in-depth scientific knowledge, e.g., 
genome sequences of many species, microarray 
expression profiles of different cell lines, single 
nucleotide polymorphisms (SNPs) in the human 
genome, etc. These data together with their 
underlying scientific Challenges spawn the new 

. field of Bioinformatics, which sprawls many aca­
demic disciplines as well as the pharmaceutical 
industry, and create one of the most exciting times 
for all quantitative researchers. There is no doubt 
that statistics will be pivotal in this new field, but 
it remains a challenge to us statisticians whether 
we can playa leading role in this biology and 
informatics revolution. This is not just a challenge, 
in fact, but also a golden opportunity for our dis­
cipline. 

The recent developments of two high through­
put biological data generation technologies help 
foster the bioinformatics hype in statistics: the 

genome sequenCing technology and the DNA 
chip technology. The word "genome" refers to 
the collection of all the chromosomes (chains of 
DNA bases; human has 23 pairs of these) in a 
cell. Certain segments of the genome, called 
~genes» (or coding regions), encode the infor­
mation needed to make proteins, which are 
action molecules of the cell, responsible for near­
ly all cellular processes. It is estimated that the 
human genome has about 30,000 genes, which, 
surprisingly, only account for -3% of the 
genome. The expression of these genes, i.e., the 
amount of protein products to be made in a cell, 
is tightly regulated so as to meet the requirements 
of specific cells and for cells to respond to 
changes in their environment. A central goal of 
molecular biology is to understand the regulation 
of protein syntheSis. 

In order to make a protein molecule, a gene is 
first transcribed to messenger RNA (mRNA), an 
easily degradable molecule, which then carries 
the information to a cellular machinery (ribo­
some) for protein production (Figure 1). While 
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figure 1: lhe process of eukaryolic protein synthesis. (Picture taken from the Graphics Gallery Web site of Access Excellence at Ihe National Health 
Museum WNW.accessexcelience.org/AB/GG/prolein_synthesis.htm/. Transcriptions toke place inside nudei, during which the RNA polymerase uses 
one strand of the DNA double helix as a template to synthesize an mRNA lhis mRNA then migrates from the nucleus to the cytoplasm after going 
through several maturation steps, including splicing.lhe coding mRNA sequence, which can be described as units of three nudeotides called codons, 
is bound by ribosome to stort the translation sloge (i.e., protein production). During this stage, the amino acids are added one by one with the help 
of tRNAs as ribosome moves from codon to codon along the mRNA. 

http:WNW.accessexcelience.org


there 

are sev­

eral levels of 

gene regulation, 

the dominant form is transcriptional reg­

ulation. Specific sequence signals 

upstream of each gene provide a target, 

called the promoters, for RNA poly­

merase (a machinery for transcription) 

to bind so as to initiate the transcription. 

When transcription factors (TFs, proteins 

specialized in regulating gene ex pres­
ions) bind near the promoter region of 

'--~ gene, they interfere with the function 
of RNA polymerase, thus, either repress­
ing or enhancing the production of 
mRNA The amount of a certain mRNA 

analysis, involves the so-called "normal­
ization," which removes systematic bias­
es due to imperfect experimental condi­
tions, and quality filtering, which picks 
out "bad spots" and removes artifacts. 
For example, due to hybridization bias 
and other reasons the mRNA levels 
labeled by cy5 may be systematically 
higher than that labeled by cy3. The fIrst 

copies in a cell reflect, albeit imperfect­
ly, the expression level of the corre­

sponding gene. 

What is the microarray? 
By orderly a~nging sam­

ples, the microarray provides a 
large-scale medium for 
matching known and 
unknown DNA segments 
based on base-pairing rules. 
There are two classes of 
microarrays. The cDNA arrays 

apply to glass slides (or nylon 
membranes) spots of complimen­

tary DNAs (cDNAs), which are gen­
erated in biological labs by reverse 

transcription (so that they only include 
the protein-coding part of the genome). 
The oligonucleotide arrays (often 
referred to as the Affymetrix arrays) 
place many thousands of gene-specillc 
oligonucleotides (called probes) synthe­
sized directly on a silicon chip. The 
probes are about 25 base pairs long, and 
20 probe-pairs (one perfect match and 
one mismatch) are often used to repre­
sent each gene (like a 20 digit barcode). 

In order to compare two types of 
cells (e.g., a cancer cell versus a normal 
cell), for example, the biologist first 
extracts the DNA materials from all the . 

normalization method is to subtract a 
constant from the expression measure­
ments of all the genes. But as demon­
strated by Li and Wong (2001), Schadt et 
aL (2000), Tseng et al. (2001), and Yang 
et aL (2002), such an approach can be 
problematic due to certain expression 
intensity-dependent biases. More sophis­
ticated statistical approaches using "rank 
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cells and labels those from one cell type 
(say, cancer cell) by fluorescence cy5 
(red) and the other cell type by cy3 
(green). The microarray is then exposed 
to the mixture of the two DNA samples 
for hybridization. When mRNA for a 
gene is more abundant in tlle cancer cell 
than in the normal cell, for example, the 
array spot corresponding to that gene 
will show a red color. Numerically, a 
vector of length G is reported, where G 
is the number of spots (genes) in the 
array. and each entry of the vector 
records the ratios of the fluorescence 
intensities (cy5/cy3)' When more than 
1:\,\10 types of cells are in consideration, 
the microarray data often takes the form 
of a Gxp matrix, where each column 
corresponds to a cell type (e.g., lym­
phoma cell, leukemia cell, normal cell, 
etc) or a treatment, and each row cor­
responds to a gene. Thus, through the 
use of DNA microarrays, one can moni­
tor Simultaneously the expression levels 
of thousands of genes in different types 
of cells. 

The role of statistics 
The amount of data produced by 

microarray experiments is daunting even 
to statisticians. An important pre-pro­
cessing step, often termed as "low-level" 

invariant" genes or robust curve estima­
tion (e.g., "LOESS") are often more 
appropriate. 

A central task intended for the 
microa~y experinlent is to fmd genes 
that are differentially expressed in the 
two samples (or types of cells). 
Suppose tbat the identical microarray 
experiment is repeated p times (e.g., 
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sands, while the number of 
replications p can be as 

low as a few. The state­
ment "differentially 

expressed (DF)" 
simply means 
that, mathemati­
cally, E=(mij) 
:to. Although 
biologists can 
discover DF 
genes even with 
p= 1 (Newton et 
al. 2001), it has 
been realized 

lately that making 
independent repli­

cations is a good 
practice. The standard t 

test is an obvious first 
attempt for recognizing DF 

leukemia cells from p patients 
compared with p wild types). 
Then, we obtain a dataset, 
(mij ;i =1, ... ,G, }=1,... , p), in which 
mij is the expression ratio of gene i 
in jth experiment. The number G 
ranges from thousands to tens of thou-

become as prominenr as "Eisen cluster­
ing." There is also no definitive conclu­
sion as to which method is the optimal 
choice. With gene clusters available, one 
may be able to use motif-searching tools 
(Liu et al. 1995) to help infer groups of 
co-regulated genes (Roth et al. 1998, Liu 
et al. 2002b). A further and much more 
difficult challenge is to infer gene regu­
latory pathways (i.e., the cascade 
of genes that lead to cellular 
function). 

Closely related 10 cluster­
ing is the classification or 
supervised learning problem. For 
example, Golub et al. (999) were inter­
ested in predicting the two subtypes of 
leukemia based on the gene expression 
profile of each sample. In such prob­
lems, one has a "training dataset" (usu­
ally of very small size) in which the class 
indicator for each sample is known, and 
wants to generate a good "rule" for pre­
dicting a future sample. This is where 
various "statislical learning" techniques 
come into the play. For example, 
Fisher's linear discrin1inate analysis, the 
nearest neighbor classification, support 
vector machines, Bayesian networks, 

genes and has been implement­
ed in all commercial microarray analysis 
packages. ~ut the distributional assume:­
tion and the problem of multiple testing 
npke the statisticians wonder how reli­
able the t tests are and what the "false 
discovery rate" is. Recently, empirical 
BEes and parametric Bayes methods 
have... been suggested to tackle these 

classification and regression trees, 
boosting, bagging, logistic regressions, 
independent component analysis, etc., 
have all been applied to the array data. 
New techniques are still being devel­
oped. 

Since rypically thousands to 
. tens of thousands of genes 
') are surveyed in a microar­
/ tray srudy, it is of interest al. 2000), the so-called "ChIP­

to select a small sub­.. chip" data, has recently become 
.• set of genes that popular for studying in vivo 
can best character- interactions between tran­

ize the two groups. scription factors (TFs) and 
This is of great value to the their target binding sites in the 
pha rmaceutical indu stry genome (Ren et al. 2000, Lieb 
because of their need to find et al. 2001). In this procedure, 
effective biomarkers for monitor­ the expressions of those DNA 
ing treatments and for defining a segments that are bound by the TF 
subpopulation that response to a certain 
drug. Sometimes one may measure 3 

have time series measurements of gene 
expressions (e.g., cell cycle data). The 
current techniques (e.g., hierarchical 
clustering, k-means, SOM, etc.) treat 
these time points as exchangeable. 
Although the Singular-value decomposi­
tion method has been used for under­
standing the yeast cell cycle data, a tin1e­

q~ons (Efron et al. 2001, Chen et al. 
2002, Newton et al. 2001, West et al. 
2001). 

Another set of important and related 
tasks, often termed as unsupervised 
learning, is to find genes that behave 
similarly in various conditions (j.e., clus­
tering the row vectors), and to fmd sub­
groups of samples (or patients' tissues) 
that are similar to each other (j.e., clus­
tering the column vectors). While the 
first task can lead the biologists to novel 
discovery of genes in related biological 
pathways or having related functions 
(Spellman et a!. 1998), the second task 
can result in clinically important sub­
groups of patients. Due to the influential 
Eisen et al. (998) article and its associ­
ated software, the clustering method of 
choice for biologists has been hierarchi­
cal clustering (Alizadeh et al. 2000). 
Other methods such as the k-means 
method, self-organized maps (Tamayo et 
al. 1998), Gaussian mixture models 
(Yeung et al. 2001, Liu et al. 2002a), 
plaid models (Lazzeroni and Owen, 
2002), etc., have later been applied to 
microarrays, although none of them 

(continued on page 64) 
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@J J, 
series model-based clustering technique 
is also valuable. 

Integration with other array data 
More biological data of similar namre 

to DNA microarrays are becoming avail­
able. Among the many array technolo­
gies, Chromatin lmmunoprecipitation 
(ChIP) combined with microarrays (Ren 

of interest are enhanced. Thus, when 
mL'{ed with a normal cell extract and 
hybridized to microarrays, the spots cor­
responding to those TF binding sites ,,·,rill 
light up. By combining ChIP-chip data 
with the gene expression data, scientists 
can often gain more insights on how the 
regulatory network should be mapped 
out (Simon et al. 2001). The ChIP-chip 
data can also be combined with the 



genome s-equence information for dis­
COvering the exact regulatory motif sites 

i patterns (Liu et al. 2002b). 
~ .Many important cellular tasks are 

achieved by interactions between pro­
tei.nS--they may interact to pass on sig­
nals (part of a Signal transduction path­
way) or to form a complex for tackling 
a difficult job (e.g., transcription or 
translation). In conjunction with high 
throughput expression and purification 
of recombinant proteins, biologists can 
prepare microarrays of functionally 
active proteins on glass slides. These 
arrays can then be used to identify pro­
tein-protein interactions, to identify the 
substrates of protein kinases, or to iden­
tify the targets of biologically active 
small molecules (MacBeath and 
Schreiber 2000). Another technology, 
the yeast two-hybrid system, has also 
been used successfully to investigate 
protein-protein interactions (Walhout 
and Vidal 2001). The integration of the 
protein interaction data with the DNA 
microarray data has revealed some 
interesting connections between expres­
sion profiles of the genes and the inter­
actions among their protein products 
'Ge et al. 2000). 

. Other promising array technologies 
~~re also under development. For exam­

ple, the small molecule microarrays can 
be used to screen large libraries of com­
pounds to identify new ligands for pro­
teins of interest (MacBeath et al. 1999), 
antibody arrays can be used to study 
regulation at the protein level, and SNP 
arrays can be used to sample molecular 
variability in natural populations, diag­
nose genetic defects, and genotype rap­
idly a large number of SNP markers.) It 
is desirable, yet challenging, to develop 
a systematic approach to integrate these 
different types of data. 

A Broader Array of 

Bioinformatics Problems 


Microarray analysis provides for stat­
isticians an excellent entIy point to 
bioinformaticslcomputational biology. 

. Here I give a brief personal account on 
other bioinformatics challenges that 
await statisticians' contributions. 

The protein folding problem, i.e., the 
prediction of the three-dimensional fold 
of a protein molecule based only on its 

'-..- ­
primary sequence information, is often 
regarded as the crown jewel of the 
biopolymer research. Knowledge on the 
Structures of target proteins and on how 

((;ontinued on page 66) 
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'they interact with ligands is of para­
mount importance to drug designers. 
Although the 3-D structures of many 
proteins have been worked out by X-ray 
crystallographers, these structures only 
account for a small part of the protein 
universe and scientists are still not capa­
ble of predicting protein tertiary struc­
tures ab initio. Recently, theoreticians 
have turned their attentions to much 
simpler black-white bead model for 
understanding the design principles of 
protein structures (Dill et al. 1995, Zhang 
and Liu 2002). Praaitioners have opted 
to use more statistically based thread­
ing method (Xu et al. 2002). This 
method "threads" the given protein 
sequence into a set of known struoural 
templates and finds the most suitable 
sequence-template fit. Many structural 
templates are constructed by combining 
Ule known protein struOUres with statis­
tical model-based protein sequence 
analysis. 

'---' Multiple sequence alignment is still 
the main tool for protein sequence 
analysis, which has been at the center 
of computational biology for about 30 
years. With the completion of the 
human genome and genomes of many 

other species, the task of organizing and 
understanding the generated sequence 
and structural data becomes even more 
pressing and challenging. Many statisti­
cal and computational methods 
for sequence alignment has been 
proposed over the years, among which 
the most popular ones include 
Clustal W. (Thompson et aL 1994), 
PSI-BLAST (AJtschul et al. ] 997), SAM 
(u.ww.cse.ucsc.edulresearchlcompbioi 
sam.htm!), and HMMER (http://hmmer. 
wustl.edu), etc. In particular, the appli­
cation of hidden Markov models (Baldi, 
et aJ. ]994; Krogh et aJ. 1994; Durbin et 
al. 1998) and the Gibbs sampler 
(Lawrence et al. 1993, Neuwald et aJ. 
1995, 1997) to biopolymer sequence 
analysis has revolutionized the field. 
Pfam database (Bateman et aJ. 2002) 
contains a large colJeaion of annotated 
protein family profiles built based on 
hidden Markov models and is becoming 
very influential in protein research. An 
emerging challenge is the analysis of 
aligned protein sequences in order to 
gain further insights on protein functions 
(Neuwald et al. 2002). 

There have been some recent inter­
ests in incorporating gene ontology 

" 	 many biological data have 
been generated and many 
biological facts are known, 
yet general principles are 

still lacking. " 

(GO) in microarray analyses. Gene 
ontology refers to a dynamically con­
trolled vocabulary that can be applied to 
(the genes of) all organisms. Each gene 
produa can be described by its molecu­
lar funaion (e.g., transcription factor), its 
involvement in biological processes (e.g., 
mitosis), and its cellular location (e.g., 
nucleus). Bringing GO into the analysis 
of high throughput biological data such 
as microarrays can be extremely insight­
fuL Recently, in the analysis of circadian 
gene regulation, Storch et al. (2002) 
mapped various clusters of genes based 
on their miCfoarray experiments to GO 
hierarchies and found that clock-regulat­
ed genes in hean and liver participate in 
many related processes even though the 
two sets of genes have almost no over­
lap. 

http:wustl.edu
http://hmmer


.TFs identify the genes they are 
•,;...tended to regulate by recognizing via 

k energetic interactions specific 
l:iD'iding sites, often located upstream of 
!he genes. It has been realized early on 
rbat these sites are often conserved. For 
example, the binding sites of STE12 of 
yeast look like "TGAAACA." If the 
genome were indeed a «novel," then 
these patterns are like key words (with 
typOs) in the novel. Thus, techniques 
for discovering new "words" in a text 
have been developed (Bussemaker et 
aI. 2000, Uu et al. 1995, Liu et al. 2002b) 
and applied to discover the TF motif 
sites and pattern. 

Statistics are likely to play an impor­
rant role in other bioinformatics prob­
lems, including evolutionary analysis 
and the analyses of SNPs in the human 
genome, both of which could help us 
understand our origins and shed light 
on protein functions and cellular 
processes. The SNPs have recently 
attracted much attention from scientists 
because of the SNPs' great potential in 
mapping genes responsible for com­

lex diseases and the availability of 
,'-.;gh 	throughout SNP detection and 

analysis tools. Statistical modeling and 
c~mputation are crucial to these devel­
opments (Daly et al. 2001, Niu et at. 
2002). 

Concluding remarks 
Many have said that this century is 

the century for biology. No matter what 
this means to each of us, we can clear­
ly see that many biological data have 
been generated and many biological 
facts are known, yet general principles 
are still lacking. As a statistician with 
an interest in biology, I feel blessed 
because I can now taste the great bio­
logical fruits (i.e., analyzing their data) 
without having to sweat to "grow" them 
by myselfl I feel that our field is also 
blessed by the high throughput biolog­
ical data generatiofl--{;tatistics has never 
been in so much demand from biolo­
gists. But it is also a challenge to all stat­
isticians. Indeed, if we statisticians do 
not proactively participate in the 
biotechnology revolution, other scien­

.~ tists (e.g., computer scientists) will learn 
and do statistics whether we approve it 
or not. We clearly have an advantage, 
for now, and we still can control our 
Own fate if we try. • 
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