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Chapter 2 Class Notes – Words and Probability 
 

Medical/Genetics Illustration – reference Bojesen et al (2003), 

“Integrin 3 Leu33Pro Homozygosity and Risk of Cancer”, J. NCI. 
 

 
 

Women only 2 x 2 table: 
 

  Outcome Status  
  With Cancer Without 

Cancer 
Total 

Stratification 
(Type) 

Non-carriers 501 (14.4%) 2983 3484 
Homozygotes  29 (21.5%)  106  135 

 Total 530 3089 3619 
 
The variables here are  

X = stratification (either non-carrier or homozygote group)  
Y = cancer status at end of study.   

Both variables here are nominal (and therefore qualitative). 
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For a review of basic probability (STAT-335), see Chap3 notes at 
http://webpages.math.luc.edu/~tobrien/courses/new335/course-homepage.html 

 
Given a single-strand sequence such as (another is on p.37): 
ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCTCCGGGGCCACGGCCACCGCTGCCCTGCC 

CCTGGAGGGTGGCCCCACCGGCCGAGACAGCGAGCATATGCAGGAAGCGGCAGGAATAAGGAAAAGCAGC 

CTCCTGACTTTCCTCGCTTGGTGGTTTGAGTGGACCTCCCAGGCCAGTGCCGGGCCCCTCATAGGAGAGG 

AAGCTCGGGAGGTGGCCAGGCGGCAGGAAGGCGCACCCCCCCAGCAATCCGCGCGCCGGGACAGAATGCC 

CTGCAGGAACTTCTTCTGGAAGACCTTCTCCTCCTGCAAATAAAACCTCACCCATGAATGCTCACGCAAG 

TTTAATTACAGACCTGAA 

Summarize/analyze using statistics: is this a coding region? Does 
this segment differ from other regions?  What is its function? 
 
Words – of length: 

 1 are 1-tuples (e.g., nucleotides or purines/pyrimidines) 

 2 are 2-tuples (e.g., di-nucleotides) 

 3 are 3-tuples or triples (e.g., codons) 

 etc. 
DNA sequences from different sources/regions of a genome may 
be distinguished from each other by their k-tuple content. 
 
2.2. Base Composition (k=1): Consider for a moment the duplex 
DNA and residues A, C, G and T.  Notice that fr(A) = fr(T), fr(C) = 
fr(G); since fr(A) + fr(C) + fr(G) + fr(T) = 1, it follows that fr(A+T) = 
1- fr(C+G).  So, you only need to know fr(C+G).  These are given for 
different organisms on p.39: these percentages range from 31.6% 
for Mycoplasma genitalium to 66.4% for Pseudomonas 
aeruginosa PAO1 (bacteria).  Asymmetries can be detected 

especially on the leading strand using the         
     

     
 

 
  

http://webpages.math.luc.edu/~tobrien/courses/new335/course-homepage.html
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2.3. Introduction to Probability (review) 
 

A discrete random variable (RV) X takes on values            

with respective probabilities            and such that 

            .  Associating the probabilities with the 

realized values of X either in a table, formula or graph is the 
probability mass function of X.  An example could be for 
nucleotides with                                ; 
we can then derive a second RV which is only counts A’s: it is 1 if 
the nucleotide is A and 0 otherwise; this is called a Bernoulli RV. 
 
Now, consider a series of Bernoulli RVs   ,   , …,    
corresponding to positions 1, 2 … n; again, each of these is 1 if the 
respective nucleotide is A and 0 otherwise.  For each of these, 
 (    )   (    )    ; also,  (    )   (   
           )               .  Then         
    is a RV that counts the number of A’s in the sequence of 
length n.  Next, we’ll make a big assumption (for the moment): 
that what occurs at one position is independent of what occurs 
elsewhere (see STAT-335 notes and p.42 §2.3.2).  In the case of 
independence, probabilities of intersections (AND) amount to 
simply multiplying the unconditional probabilities. 
 
2.3.3. Expected Values and Variances: the expected value (EV) of 
RV X is just its mean:  ( )                   .  Thus, 

for the above  (  )    .  Also, since  (         )  
 (  )   (  )    (  ),  ( )         (dropping the 
subscript for convenience).  Next, variance is defined as 

   ( )   [(   ) ]  ∑ (    )
   

 
   ; the short-cut  
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formula is then    ( )   (  )     ∑   
     

  
   .  So,  

   (  )       
    (    ) by the short-cut formula.  A 

final snippet: since we’re assuming the   ’s are independent and 
since the variance of a sum of independent RVs is the sum of the 
individual variances,    ( )      (  )     (    )  
  (   ) (again dropping the subscript). 
 
2.3.4. The Binomial Distribution: by now, you have noticed that 
            is a Binomial RV with parameters   and 

    .  Hence,  (   )  (
 
 
)  (   )               

 
2.4. Simulating from Probability Distributions: to understand the 
behavior (e.g. distribution) of a RV such as  , simulation can be 
very helpful.  To do so, we’d generate a large number (m) of  : 
          .  We could then calculate the sample mean 

( ̅   

 
∑   
 
   ), sample variance (    

   
∑ (    ̅)

  
   ), and 

histogram to get an idea of  ( ),    ( ), and the distribution of 
 .  To do this, pseudo-random number generators are used; these 
generators simulate uniform RVs on the interval (   ), and then 
convert.  To illustrate, it’s easy to simulate from            
                     distribution (a) for A versus rest, and 
(b) for all four nucleotides using Minitab and R. 
 
In R, we use the “sample” command: 

pi<-c(0.25,0.75) 
x<-c(1,0) 
seq1<-sample(x,10000,replace=T,pi) 
seq1[1:30] 
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For the nucleotide problem: 

pi<-c(0.25,0.25,0.25,0.25) 
x<-c(1,2,3,4) 
seq<-sample(x,10000,replace=T,pi) 
seq[1:30] 
hist(seq) 

 
To simulate from the Binomial (             ) distribution 
we use the “rbinom” command: 

x<-rbinom(10000,1000,0.25) 
x[1:10] 
mean(x) 
sd(x)^2 
hist(x,xlab="number of successes",main="Binomial Simulation") 
 
Now, suppose in a sequence of length       , we observe 
      A’s, and we want to know the associated p-value in a 
test where the alternative hypothesis is           ; then we 
wish to find the probability of at least 280 ‘successes’ in this 
binomial experiment.  Ways to find this are (a) direct calculation 
from equation (2.20) on p.48 (              ), (b) 

approximation using the CLT ( (  
         

√     
)          ), (c) 

using Minitab or calculator, or (d) simulation (see p.63 exercise 4). 
 
2.5. Biological Words (k=2): let    denote the nucleotide at 
position   and so        is the dinucleotide starting at the same 
position (reading of course in the    to    direction);    can take on 
values A,C,G,T, and        can equal AA,AC,AG,AT,CA,CC, 
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CG,CT,GA,GC,GG,GT,TA,TC,TG,TT.  “Dinucleotides are 

important in part because physical parameters associated with 
them can describe the trajectory of the DNA helix through space 
(DNA bending), which may have effects on gene expression.” 
 
Next, with  (     )      and  (       )     , we can 

test for independence,  (             )         for all 

pairs, by using    
(   ) 

 
 with   (   )      .  First, we 

need to calculate 

  {
           

          
                   

 

Then, the relevant test statistic is   
     ⁄ , so for example, if 

   ⁄       then we conclude that the     model does not fit 
for this dinucleotide pair at the 5% level of significance.  In 
practice, frequencies from the data fr(A), fr(C), fr(G), fr(T) are 

used to estimate the probabilities. Empirical results are given in 
Table 2.2 on p.50 for E. coli and Mycoplasma genitalium; clearly, 
the first 1000 bp for E. coli deviate from the iid model. 
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2.6. Introduction to Markov Chains: As seen by Table 2.2, the iid 
model may not be rich enough, and a richer one may be needed – 
one approach is to use a Markov chain.  If in a nucleotide at 
position we observe a C, then the nucleotide at the next position 

may depend upon this information, and we are led to conditional 
probabilities; often we find that in this case the probability that 
the next position is G is less than its being an A, C, or T. 
 

2.6.1. Conditional Probability (review): in the introductory notes, 
we saw that the probability of events A and B (intersection) 
occurring is  (   ) and the probability of events A or B (union) 
occurring is  (   ).  Then, the conditional probability of event 
A given that B has occurred is: 

 (   )  
 (   )

 ( )
 

Similarly,  (   )  
 (   )

 ( )
.  An immediate consequence of this is 

the multiplication rule:  (   )   ( ) (   )   ( ) (   ).  
Bayes’ Theorem follows directly: 

 (   )  
 (   ) ( )

 ( )
 ( ) 

Also, let            for a partition of   (so that all    are 
disjoint       for     and exhaustive             ), 

then  ( )  ∑  (    ) (  )
 
   , so (*) can be rewritten. 

 
2.6.2. The Markov Property: “the sequence {          } is 
called a first-order Markov chain if the probability of finding a 
particular character at position     given the preceding 
characters at positions          is identical to the probability 
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of observing the character at position     given the character 
state of the immediate preceding position,  .”  Formally,  

 (                             )   (           ) 

Markov chains of order 2 correspond to the case where the 
conditional probability of the present position depends on the 
previous 2 positions, and so on.  We also consider only Markov 
chains that are homogeneous: the above property doesn’t depend 
upon   (position along the nucleotide or segment). 
Next, let      (           ) be the one-step transition 

probabilities for      ; for the nucleotide problem,   {A,C,G, 

T}.  For the nucleotide problem, these probabilities are given in 

the one-step transition matrix: 
 

  [

      
      

      
      

      
      

      
      

] 

 

Each row sums to one, so ∑          ; this follows since after 

each position there must be one character from   next in the 
sequence, and can be written in the nucleotide case as 
 

  ⃑⃑   ⃑⃑   ⃑⃑  [

 
 
 
 

] 

 

Next, we have to indicate how the Markov chain begins; for this, 
we let the initial probability distribution   have elements 
 

    (    )     
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Also, at time  , we have  (    )  ∑       ; in matrix terms: 

 ( )    .  In the nucleotide case, the right hand side is 
 

[        ] [

      
      

      
      

      
      

      
      

] 

 

The result is also a     matrix (vector), and the first element is 
 

 (    )                          
 

On p.53 (text), the authors show that the transition matrix from 

time   to time     is given by   , and so on, so that means that 

 ( )   ( )     . 
 
A stationary distribution   for the chain is when    ∑          , 

so in matrix form:     . 
 
2.6.3. A Markov Chain Simulation: following is the dinucleotide 
frequencies of M. genitalium: 
 

 A C G T 
A 

[

          
          

          
          

          
          

          
          

] C 

G 

T 
 

Summing across the rows, we obtain empirical estimates 
                                   , and then 

dividing through (e.g.     
     

     
      ), we get    
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 A C G T 

A 

[

          
          

          
          

          
          

          
          

] C 

G 

T 
 

We can also assume that the initial distribution is (as above) 
 

  (                       ) 
 

Now we can simulate (see Computational Example 2.3 on p.55): 
 

markov1 <- function(x,pi,P,n) { 
    mg <- rep(0,n) 
    mg[1] <- sample(x,1,replace=TRUE,pi) 
    for(k in 1:(n-1)) { 
        mg[k+1]<-sample(x,1,replace=T,P[mg[k],])  } 
    return(mg) } 
 

x<-c(1:4) 
pi<-c(0.342,0.158,0.158,0.342) 
P<-matrix(scan(),ncol=4,nrow=4,byrow=T) 
0.423 0.151 0.168 0.258 0.399 0.184 0.063 0.354 0.314 
0.189 0.176 0.321 0.258 0.138 0.187 0.415 
tmp<-markov1(x,pi,P,50000) 
length(tmp[tmp[]==1])/length(tmp) 
[1] 0.3441 
length(tmp[tmp[]==2])/length(tmp) 
[1] 0.15882 
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length(tmp[tmp[]==3])/length(tmp) 
[1] 0.15936 
length(tmp[tmp[]==4])/length(tmp) 
[1] 0.33772 
 

Also, we used the above to simulation the dinucleotide 
distribution (not shown); since it matches the original  , we 
conclude as in the text (p.57) that “the Markov model provides a 
good probabilistic description of the data for M. genitalium DNA.” 
 
2.7. Biological Words with k=3 (Codons): We’ll discuss two 
measures here relating codons to amino acids with an eye to 
distinguishing coding from non-coding genetic regions. 
 

First, we’ll compare expressed codon frequencies to those which 
would be expressed under independence.  To illustrate using E. 

coli, from Table 2.1 (p.39),  ̂( )   ̂( )          ̂( )  

 ̂( )       , so under independence,  ̂(   )        

                    and  ̂(   )              
             .  These are the only two codons coding for 
amino acid Phe (phenylaline), so under independence we expect 

the     proportion to be roughly 
       

               
      .  

Similar results are given in the “Predicted” column in Table 2.3, 
and these results are compared with the empirical results for two 
gene classes (I and II).  Ménigue et al then noted when there were 
big differences and investigated and found that “Class II genes 
were largely those such as ribosomal proteins or translation 
factors – genes expressed at high levels – whereas Class I genes 
were mostly those that are expressed at moderate levels.” 
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Another measure is the     (codon adaptation index): 
 

    [∏
  
  

 

   

]

   

 

 

It “is the geometric mean of the ratios of the probabilities for the 
codons actually used to the probability of the codons most 
frequently used in highly expressed genes.”  It is illustrated on 
p.59 again using E. coli.  “In E. coli, a sample of 500 protein-coding 
genes displayed CAI values in the range from 0.2 to 0.85.”  
Further, “there is a correlation between the CAI and mRNA levels.  
In other words, the CAI for a gene sequence in genomic DNA 
provides a first approximation of its expression level: if the CAI is 
relatively large, then we would predict that the expression level is 
also large.” 
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