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Chapter 3 Class Notes – Word Distributions  
and Occurrences 

 
3.1. The Biological Problem: “restriction endonucleases provide[s] 
the means for precisely and reproducibly cutting the DNA into 
fragments of manageable size” and a “restriction map is a display 
of positions on a DNA molecule of locations of cleavage by one or 
more restriction endonucleases” – serves as a “fingerprint”.  
Recall that “cloning puts DNA of manageable size into vectors that 
allow the inserted DNA to be amplified, and the reason for doing 
this is that large molecules cannot be readily manipulated without 
breakage.”  Our focus: 

 If we are able to digest (cut) the DNA with a restriction 
endonuclease such as EcoRI, approximately how many 
fragments would be obtained, and what would be their size 
distribution? 

 Suppose that we observe 761 occurrences of the sequence  
5’-GCTGGTGG-3’ in a genome that is 50% G+C and 4.6 Mb in 

size.  How does this number compare with the expected 
number, and expected according to what model? 

 
3.2 Modeling the Number of Restriction Sites in DNA: we know 
the (%G+C), and we’ll assume (for now) iid letters (and that is a 

very big assumption!).  Regarding the number of restriction sites, 
“our model is going to assume that cleavage can occur between 
any two successive positions on the DNA.”  Even though the    
are not in fact independent, the “binomial distribution often 
works well nonetheless.”  To test the iid model, we compare 
actual with expected: lambda DNA sequence is 48,502 bp long,  
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and we use                          : 
 

   
 

In most cases, this model fits well: “suggesting that the iid model 
adequately describes the number of restriction sites for lambda 
DNA.  There are five enzymes whose site numbers in lambda are 
well over three standard deviations away from the predicted 
value.  If this were consistently observed for other bacteriophages 
of E. coli and for the E. coli chromosome, then we might 
hypothesize that the deficiency of these recognition sequences 
may reflect some biochemical feature of the organism (e.g., 
peculiarities of the DNA repair system).” 
 
3.2.4. Poisson Approximation to the Binomial Distribution: hello 
 

Suppose that   has a Binomial distribution with parameters   
and  .  Then, since the mean is    and the variance is        , 
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whenever   is very small, the two are nearly the same.  It’s not 
hard to show that for large   and small   (math language: as 
    and     so that      stays constant), then the 
distribution for   is approximately that of a Poisson RV: 
 

       
  

  
             

 

The mean and variance of the Poisson distribution are      

        .  (Note: ∑        
       ∑

  

  

 
      since 

∑
  

  

 
        

  

  
 

  

  
     ) 

 
Comp. Example 3.1: estimate the probability there are no more 
than 2 EcoRI sites in a DNA molecule of length 10,000 assuming 
equal base frequencies and          .  Here,      , and  
 

       
  

  
    

  

  
    

  

  
             

 

Can be obtained in R using  ppois(2,2.4).  “In other words, 

more than half the time, molecules of length 10,000 and uniform 
base frequencies will be cut by EcoRI two times or less.” 
 
3.2.5. The Poisson Process: translate   into length ( ) and   into 
rate ( ).  The mean is thus                 . 
 

                       
     

  
               

 
Moreover, provided we have two non-overlapping intervals with 
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             , then the lengths of the intervals simply 
add: 

                                

 
          

 

  
                     

 
3.3 Continuous Random Variables: RVs such as the Binomial and 
Poisson are called discrete since the RV takes on (at most 
countably infinite) number of points; here the RV takes values in 
an interval of whole real line.  Further, probability formula are 
called probability density functions (“pdf’s”, denote     ), and 
sums are replaced by integrals. 
 

We already saw the uniform distribution on      : 
 

     {
 

   
           

           
 

 

Here, the mean and variance are    
   

 
 and      

      

  
 

 

The exponential distribution with parameter   has pdf: 
 

     {  
            
           

 
 

Here, the mean and variance are    
 

 
 and      

 

   

 

The standard normal distribution has pdf: 
 

     
 

√  
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Here, the mean and variance are      and       , and we 
write         .  Note if          and       , then 

         ; equivalently,   
   

 
       . 

 

We can easily use R to find Normal probabilities:  
                                   

> pnorm(1.5,1,2)  gives [1] 0.5987063 
 
3.4 The Central Limit Theorem (CLT): applies to averages and 

sums:            are iid with mean   and variance   , then the 

average is  ̅  
 

 
         .  Then, the expected value and 

variance of  ̅  are   and 
  

 
, so that 

 ̅     

 √ ⁄
 has expected value 0 

and variance 1.  The CLT states that for   sufficiently large, 
 ̅     

 √ ⁄
  

behaves like a Standard Normal RV.  This applies too to sums 

since 
 ̅     

 √ ⁄
 

∑   
 
      

 √ 
.  Next, we use this to approximate the 

Binomial distribution, as done in STAT-335. 
 

bin25<-rbinom(10000,25,0.25) 
mean<-25*0.25 
sd<-sqrt(25*0.25*0.75) 
bin25<-(bin25-mean)/sd 
hist(bin25,xlim=c(-4,4),ylim=c(0,0.4), 
prob=T,xlab="Sample size 25",main="") 
x<-seq(-4,4,length=1000) 
lines(x,dnorm(x)) 
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Next, continuing the previous Q: in a random uniformly 
distributed DNA sequence of length 1000, find the probability of 
at least 280 A’s.                           , so we 

know that                    and       

√                      ; using the Normal 
Approximation (without the continuity correction), we get 

          (  
       

       
)                  

1-pnorm((280-250)/sqrt(187.5))   gives  [1] 0.01422987 
 
3.4.1 Confidence Interval for Binomial Proportion:  
 

For sufficiently large  , since 
 ̂  

√ ̂    ̂  ⁄
 is approximately Standard 

Normal, we can find a 95% CI for   by using the interval: 
 

( ̂      √
 ̂    ̂ 

 
   ̂      √

 ̂    ̂ 

 
)  

 

For 90%, use 1.645 in place of 1.96. See Homework Ex.10 on p.98. 
 
3.4.2 Maximum Likelihood Estimation:  
 

This is a technique to estimate unknown parameters such as   
above: we form the “likelihood” of the parameter given the data, 
and use basic calculus to maximize it; this gives the maximum 
likelihood estimate (MLE).  To illustrate let            be   iid 
Bernoulli RVs with success probability  ; then each probability 

mass function is                   By independence, the 
joint probability function is (with   ∑   

 
   ) 
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               ∑   
 
          ∑   

 
               

 

(This is the same as the likelihood for the binomial distribution 

but with the (
 
 
) term dropped since it is not a function of  .) 

 
We now view this joint probability function as the likelihood 
function of p and write: 
 

                
 
We wish to find the value of   which maximizes     ; but this is 

also the value of p which maximizes    (    )         

                     .  Here, we set 
 

 
 

   

   
  .  This 

gives the MLE,  ̂     ̂  
 

 
.  See also Homework #11, p.98. 

 
3.5 Restriction Fragment Length Distributions:  
 

Suppose   (number of restriction sites) follows a Poisson process 
with rate   per bp; then probability of observing k sites in an 

interval of length   bp is        
     

  
               

Also, if there is a site at  , probability that a restriction fragment 
length   is larger than   is 
 

        (                    )       
 

So,        ∫       
 

 
       , and the density for   is 

(by differentiation)           .  So, if the number of sites ( ) 
follows the Poisson distribution, then the distance between the 
sites ( ) has an exponential ( ) distribution; mean length =    . 
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3.5.1. Application to Data: digest bacteriophage lambda with AluI; 
then the actual restriction fragment lengths and histogram are: 

      
 

Here,                         and   
    

     
, so 

        , so the probability of a fragment being longer than 

1000 bp is               .  Since we observed (see Table 3.1 
on p.73)     such fragments, we would expect to see     
            or about 3 longer than 1000 bp.  Since there are 
actually 10 observed, “[t]here is some evidence that our simple 
probability model does not describe the longer fragments very 
well.”  Hence, we now turn to a simulation. 
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3.5.2. Simulating Restriction Fragment Lengths:  
 

The above Poisson/exponential model “misses” somewhat, so 
let’s now simulate using the iid model; see pp. 85-7. 
 
  # inseq: vector containing input DNA sequence, 

  # A=1, C=2, G=3, and T =4 

  # seq: vector for restriction site, length m, coded as above. 

  # Make/initialize vector to hold site 

  # positions found in inseq 

 

  rsite <- function(inseq, seq){ 

    xxx <- rep(0,length(inseq)) 

    m <- length(seq)   # Length of restriction recognition sequence 

    truth <- rep(0, m) # To record whether pos. of inseq match seq 

      # Check each position to see if a site starts there. 

    for(i in 1:(length(inseq) - (length(seq) - 1))) { 

      for(j in 1:m) { 

 if(inseq[i + j - 1] == seq[j]) { 

   truth[j] <- 1 # Record match to jth pos. 

   } 

      } 

      if(sum(truth[]) == m){ # Check whether all positions match 

        xxx[i] <- i # Record site if all positions match 

      } 

      truth <- rep(0, m) # Reinitialize for next loop cycle 

    } 

    # Write vector of restriction site positions stored in xxx. 

    L <- xxx[xxx > 0] 

    return(L) 

  } 

x<-c(1:4) 

propn<-rep(0.25,4) 

seq2<-sample(x,48500,replace=T,prob=propn) 

alu1<-c(1,3,2,4) 

alu.map<-rsite(seq2,alu1) 

length(alu.map) 

alu.map[1:10] 

 

flengthr<-function(rmap,N) { 

  frags<-rep(0,length(rmap)) 

  rmap<-c(rmap,N) 

  for(i in 1:(length(rmap)-1)) { 

    frags[i]<-rmap[i+1]-rmap[i] 

  } 

  frags<-c(rmap[1],frags) 

  return(frags) 

} 

alu.frag<-flengthr(alu.map,48500) 

alu.frag[1:10] 

length(alu.frag[alu.frag>=1000]) 
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We’re looking for AluI, AGCT = 1324, and the simulated results 
(both number and lengths) match the actual results on top of 
p.85.  We could do a more rigorous analysis of the degree of 

matching as per p.98 exercise 13 (   goodness of fit test). 

 
 
3.6 k-word Occurrences: we wish to discover functional sites in 
DNA, and we use promoter sequences: “promoters are gene 
regions where RNA polymerase binds to initiate transcription.  We 
wish to find k-words that distinguish promoter sequences from 
average genomic sequences.  Because promoters are related by 
function, we expect to observe k-words that are over-represented 
within the promoter set compared with a suitable null set.  These 
k-words help to identify DNA ‘signals’ required for promoter 
function.”  Images below taken from: 

http://www.nature.com/scitable/topicpage/dna-transcription-426# 
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Consider pp.509-511:      
promoter sequences of length      
from E.coli.  “We ask whether there 
are an unusual number of occurrences 
of each word in the promoter 
regions.”  In this case, the authors use 
   .  Under this iid model, 
“expect4.ec” in Comp. Ex. 3.6 
calculates the expected frequencies 

for each of the        words in    
promoters of length 51; these range 

from                     to 

                   . 

 
Our first approach for word counting is to count the number of 
occurrences of each word (“tcount” on pp.91-2), and to compare 
as in Table 3.2 on p.92 the observed frequencies with the 
expected frequencies.  Words that seem to be overexpressed are 
TTTT, CATT, AATT, TAAT, … (words with lots of A’s and T’s); but 

are these results “statistically significant”? 
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But there is a sticky issue here with whether or not we count 
overlaps, so we drop this idea, and proceed as in the following… 
 
Our second approach for word counting here is to count the 
number of promoter sequences (  ) in which the given word 
occurs at least once (since only one occurrence is sufficient for 
function).  So, since a word appears at least once in a promoter 
sequence or not, we’ll use the Normal approximation to the 
Binomial, with simulation to approximate the respective 
                                                     
 
ec.prom<-matrix(scan("f:aaa Teaching/a2 STAT337_437 Quant 
Bioinformatics/C Spring 2014/Ec.table3.txt"),nrow=49,byrow=T) 
prom.ncount<-Ncount4(ec.prom,4) 
prom.ncount[1,1,1,1] 
[1] 13 
ec.sim<-matrix(nrow=5000,ncol=51) 
for(i in 1:5000){ 
  ec.sim[i,]<-sample(x,51,replace=T,prob.ec) 
} 
sim.count<-Ncount4(ec.sim,4) 
sim.count[1,1,1,1]/5000 
[1] 0.1294 

 

Calculated statistics (   
       

√          
) and p-values are on p.95; 

note that due to the multiple testing issue, we use the cut-off of 
       .  These methods are naïve and     may well be too 
small, but these techniques have “allowed researchers to make 
the initial pattern discovery.” 


