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Chapter 7 Class Notes – Rapid Alignment Methods:  
FASTA and BLAST 

 
7.1. The Biological Problem: we discuss methods to speed up the 
alignment process involving a query/target sequence and a search 
space; the researcher is usually interested in seeking info about 
the query sequence regarding its possible function by comparing 
this sequence with related sequences in so-called “model 
organisms” (organisms chosen for intensive genomic, genetic 
and/or biochemical studies), such as Escherichia coli (a 
bacterium), Saccharomyces cerevisiae (baker’s yeast), 
Caenorhabdidtis elegans (a nematode), Drospohila melanogaster 
(fruit fly) Arabidopsis thaliana (mustard weed), and Mus musculus 
(the common mouse).  Due to rigorous testing, many of the genes, 
gene products, and functions of gene products are known for 
these model organisms.  “The important point is that a target 
gene is likely to have a function similar or related to functions of a 
homolog in one or more model organisms… rapid [alignment] 
methods are necessary because of the very large number of 
comparisons that must be made…” 
 
7.2. Search Strategies: “one way to speed up sequence 
comparison is by reducing the number of sequences to which any 
candidate sequence must be compared.  This can be done by 
restricting the search for a particular matching sequence to ‘likely’ 
sequence entries.”  [Example: our textbook (key words “genome”, 
“probabilistic”, “statistics”, “alignment”) and a library.]  Given 
two sequences   and  , if   and   do not have at least some words 
in common, then we can decide that the strings are not similar.  
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We should be mindful that “the appearance of a subset of [certain 
common] words is a necessary but not sufficient condition for 
declaring that   and   have at least some sequence similarity. 
 
7.2.1. Word Lists and Comparison by Content: instead of scanning 
each of 2 sequences for each k-word, we will form a new (look-up) 
table.  For words    CCATCGCCATCG (    ) and   

 GCATCGGC (   ) & searching for 2-tuples (   ), we get: 
 

            
In our new notation, for the word     CG,    ( )  {    } and 

   ( )  { }.  A statistic that counts k-words in common is 
 

   ∑(   ( ))(   ( ))

 

 

 

Here, we obtain     
                    

                                  
  ; then we can compare this value with some cut-off threshold 
value.  A criticism of this statistic is that it ignores the relative 
positions of the k-words in the sequence. 
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7.2.2. Binary Searches: given that   and   have the  -words (    
here) listed in Table 7.1 (below at right), how do we find the first 
word in list  , TGAT, within list  ? 
 

Once the list of k-words of   has been 
ordered, the technique of a binary search 
first cuts the total number of k-words in   
(    ) in half and asks: does TGAT 

occur after entry   ⁄     in this 
ordered list? [yes].  Step 2: after entry 
  ⁄    ⁄    ? [yes].  Step 3: after 
entry   ⁄    ⁄    ⁄    ? [no].  
Step 4: after entry   ⁄    ⁄  
   ⁄    ? [no].  Step 5: after entry 
  ⁄    ⁄     ⁄    ? [no]. Takes 
only 5 steps, and in general will take only 
      steps (which here is 5 since 
    (  )   ).  Otherwise, we would 
have used 25 steps, and the expected 
number would have been        . 

 

 
7.2.3. Rare Words and Sequence Similarity: for words of length  , 
first take sequence   of length   and sequence   of length  , and 
order the (     )  -words of   and the (     )  -words 
of  .  Next, find matches in the list by alternating between the lists 
as needed (recording locations too). 
 
7.3. Looking for Regions of Similarity Using FASTA: technique put 
forth in Wilbur & Lipman (1983) and Pearson & Lipman (1988); it 
relies on the Smith-Waterman local sequence alignment method. 
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7.3.1. Dot Matrix Comparisons: Again for    CCATCGCCATCG 

and    GCATCGGC example, we obtain the following dot 

matrices for     (in A),     (in B), and     (in C). 
 

      
 

These are a special type of alignment matrices; dots in A coincide 
with agreement of nucleotides, ‘2’s in B coincide with first letters 
of matching 2-tuples, and ‘3’s in C for first letters of matching 3-
tuples.  Notice here there are two predominant diagonals 
(denoting regions of similarity of the sequences), and also that 
(# of 3s in C) ≤ (# of 2s in B) ≤ (# of dots in A).  
 
7.3.2. FASTA – Rationale: the rationale is observed in the above 
dot matrices for    , only focusing on the diagonals.  We index 
diagonals by letting      , and we need to calculate scores    
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as follows: work through Table 7.2 one word at a time and tally 
the number of times we observe a match between the  -word at 
position   in   and     in   (for          ). 
 

To illustrate with the example, 
   ,     ,    , so 
       ; each    is 
initialized at 0. We then get 
      since          
for words AT, CA, CG and TC.  

We also find          
           ; this coincides 
with dot matrix B above.   

 
 

The FASTA pseudo-code is given in Box 7.1 on p.176; the 5 steps in 
FASTA are: 

1. Create the “look-up table” as above at right, creating the 
table first by passing through   and recording the positions   
(       ) of the  -words, and then pass through   to 
one-by-one look up the  -words of   and record the position 

2. Identify high-scoring diagonals as described above (by finding 
the respective             ), and choose the top 10 
of these diagonals 

3. Rescore these diagonals; this rescoring is needed as shown: 
 

         
 



Quantitative Bioinformatics 
 

6 | P a g e  
 

They’re looking for 4-tuple matches here.  In the first 
instance, there are no matches even though the sequences 
are 75% identical; in the second instance, there is a match, 
but the sequences are only 33% identical.  “Rescoring reveals 
sequence similarity not detected because of the arbitrary 
demand for uninterrupted identities of length  .” 

4. Join the initial regions with the aid of appropriate joining or 
gap penalties for short alignments on offset diagonals; that 
is, some diagonals may be offset from each other (i.e. via a 
gap) as below at left (for two proteins).  Diagonals    and    
should be joined – the offset here is    . 

5. The final step is to perform a rigorous Smith-Waterman local 
alignment. 

 

The above steps are displayed below at right: ‘A’ illustrates Step 2 
(finding diagonals), ‘B’ shows the rescored plot of Step 3, ‘C’ gives 
joined regions in Step 4, and ‘D’ illustrates the results of the local 
alignment. 
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7.4. BLAST (Basic Local Alignment Search Tool): High-scoring local 
alignments are called “high scoring segment pairs”, or HSPs.  The 
output of BLAST is a set of HSPs and associated p-values. 
 
7.4.1. Finding Local Matches: a given query sequence is used as a 
template to construct a set of subsequences of length   that can 
score at least   when compared to the query; a substitution 
matrix containing neighborhood sequences is used.  To illustrate: 
 

  is query and   is search 
space: 
 

  

             
 

Here, subsequence length is     and the threshold value is 
   ; start with GCATC in  , build the neighborhood of 15 new 

words as above (bottom), so the neighborhood contains 16.  Then, 
do the same for CATCG, ATCGG and TCGGC in  , giving 64 5-

word patterns in the neighborhood.  Now look for exact matches 
(called “seed” hits) of each of these in   as above at top right.  The 
final step of BLAST is in producing un-gapped extensions from 
these seed hits. 
 
7.4.2. Scores: here a p-value will be the probability of a more 
extreme score than the one found (in the complete database); if a 
random sequence is  , the database is  , and the score is s, this is 
 ( (   )   ).  Here, matching score is   and mismatch is    
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(no mismatches and no indels), and the alignment matrix is   
 .  Let    (                            ), so a mismatch 
followed by   identities has probability (   )  .  Since there are 
   places to begin the alignment, the expected number (mean) 
of local alignments of at least length t is     (   )  .  We 
want this to be a rare event, so this is well-modelled by the 
Poisson distribution with mean  .  Thus, the probability there is a 
local alignment of length t or longer (p-value) is approximately 
 

   (             )              (   ) 
 
 

 

Even though some of these calculations are approximate, this is 
the reasoning behind BLAST’s calculation of E-values (on right): 
 

 ( (   )   )          
 
 

 

Here,     and       are parameters to be estimated. 
 
7.5. Scoring Matrices for Protein Sequences: as pointed out in 
Chapter 6 (for DNA), scoring matrices must make good (biological) 
sense.  We now turn to aligning residues of proteins such as: 
 

              
              

 

Thus, we need to find the probability     of matching amino acid 
  with amino acid  : we wish to find the scoring.  In general, for 
the sequences           and          , under a 
random (indep.) model ( ), the probability of having A and B is 
 

 (   | )  ∏   
 

∏   
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Here, for example,     is the probability of amino acid of type    

irrespective of position.  Under the “match” ( ) model, we have: 
 

 (   | )  ∏     
 

 

 

Alignments of proteins   and   use the score calculation: 
 

      
 (   | )

 (   | )
 ∑     (

     
      

)
 

   
 ∑  (     )
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The above BLOSUM62 matrix is a substitution matrix for proteins, 

and it essentially contains the scores,  (     )      (
     
      

).  To 

develop these:  (   )  (   )  (   )   (with A = alanine, R = 

arginine, … as in the matrix on p.183), we can first estimate the 
“random” probabilities such as    by counting the number of 
each amino acid type in an appropriate collection of protein 
sequences and then dividing by the total number of amino acids 
present.  Estimating the     is as follows (see pp.186-7): 
 

First “blocks” (using the Blocks database: each block consists of   
aligned sequences each having   residues), and we count the 
number of pairwise matches and mismatches for each amino acid 
type.  Each block provides    (   )  ⁄  possible pairings, and 
this is done for more than 24,000 blocks.  Frequencies are then 
arranged into a       frequency matrix of the form: 
 

 A R N D … V 

A           
R               
N                   
D                       
… … … … … …  
V                     …      

 

Then, for each of the 
  (  )

 
        entries,     

   ∑ ∑    
 
   

  
   ⁄ .  Then, we take  (   )      (

   

    
), and in 

practice, these are rounded off and scaled.  For BLOSUM, the 
scores are reported in half-bits:  (   )[         ]    (   ) 
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Variation on Computational Example 7.2: using the BLOSUM62 
matrix, give the alignment score for MQLEANADTSV and 

LQECAEAQGEM.  Here, we get the score: 
 

                          (         ) 
 

Next, check the BLOSUM62 matrix to make sure that it makes 
sense.  First, since tryptophan (W) is a relatively rare amino acid, it 

makes sense that the score for it being conserved (  ) is high.  
Second, the score for matching D (aspartic acid) and L (leucine) is 

very low (  ) since the codons for the former, {GAC, GAU}, are 

quite “far” or “distant” from those for the latter, {UUA, UUG, CUU, 

CUC, CUA, CUG} – in the sense that they are two mutations away; 

also, D is polar and negatively charged whereas L is nonpolar and 

neutral.  Note too how “close” ( ) are I {AUU, AUC, AUA} and V 

{GUU, GUC, GUA, GUG}. 
 

7.6. Tests of Alignment Methods: what are the chances of finding 
in a database search HSPs that are not homologs?  Interestingly, 
“the three dimensional structures of homologs and their domain 
structures will be conserved, even though the proteins may have 
diverged in sequence.”  Also, a good alignment programs must 
meet two criteria – it must maximize the number of homologs 
found (true positives; sensitivity) and it must minimize the 
number of nonhomologous proteins found (false positives; 
specificity).  Brenner et al (1998) reported some testing of Smith-
Waterman, FASTA and the earlier BLAST. 
 

Not great news: they found that at best only about 35% of 
homologs were detectable at a false positive error frequency of 
0.001 per query sequence. 



Quantitative Bioinformatics 
 

12 | P a g e  
 

In the past, a rule of thumb was that sequence identities of 25-
30% in an alignment signified true homology.  To test this, these 
authors used a database of known proteins annotated with 
respect to homology/non-homology relationships to test the 
relationship between sequence identity and homology.  Their 
results are below (plot of percent identity within the alignment 
versus alignment length) for proteins that are not homologs.  
Note that for alignments 100 residues in length, about half of the 
non-homologous proteins show more that 25% sequence identity. 
 
This clearly shows why the statistical analysis of HSPs (i.e. E-
values) is needed. 
 

 


