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Chapter 9 Class Notes – Signals in DNA 
 

9.1. The Biological Problem: since proteins cannot “read”, how 
do they recognize nucleotides such as A, C, G, T?  Although 

only approximate, proteins actually recognize specific atoms 
or groups of atoms on bases or base pairs; examples: 

 Restriction endonuclease recognition sequences 

 Binding sites for regulatory proteins 

 Elements within replication origins and termination 
regions in genomes 

 Promoters 
 

Proteins interacting with DNA: (see link 
http://en.wikipedia.org/wiki/Protein%E2%80%93DNA_interaction ) 
 

                                     

http://en.wikipedia.org/wiki/Protein%E2%80%93DNA_interaction
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Above image uses bacteriophage lambda cro protein as an 
example to illustrate the relationship between binding protein 
and binding site structure.  
 
The sites recognized by cro protein are summarized as follows 
in the table below (taken from text, p.231).  Note that the 
sequences of the six operator sites are similar but not 
identical. 
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Identifying Signals in Nucleic Acid Sequences – one approach 
is the unsupervised approach: an example of unsupervised 
pattern discovery is identifying k-words that are over-
represented in a set of functional sequences such as 
promoters (we did this back in 3.6, p.89).  Another approach, 
supervised learning, includes prior knowledge of the pattern 
to be found (our focus in this chapter). 
 

Context example: the MERS (Middle East Respiratory 
Syndrome, 2012), is a coronavirus, akin to SARS (Severe Acute 
Respiratory Syndrome, 2003).  We want to sequence it, to find 
the proteins (BLAST), and ultimately to make an antiviral drug. 
 

9.2. Representing Signals in DNA: Independent Positions – the 
simplest way to represent signals in DNA (specifically the 
binding site) is as a consensus sequence: a string of characters 
corresponding to the most common occurrences of bases at 
each position. One example (glucocorticoid receptor element, 
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GRE) follows.  The breakdown of the percentages of the 4 
nucleotides at each position provides an idea of the amount 
of agreement or variability at the specific position. 
 

 

PWM: Positional Weight Matrix 
 

 

 

So, we are transitioning away from the “iid” (independent and 
identically distributed) model – we are removing the “id”, and 
so the different nucleotide positions do not have to have the 
identical distribution here. 
 
The needed steps here are first to gather together and align 
representatives of the signal.  Then, a training set (collection 
of bona fide signals or sites) is used to produce the probability 
model.  A second bona fide set of signals/sites – called the 
validation set – is needed for testing the model.  Sometimes 
the construction of the model requires a challenge set of 
sequences (the set to which the real sequences in the training 
set are contrasted).  “The process of estimating the 
probability distributions from the training set is called 
learning in the machine-learning world.” 
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9.2.1. Probabilistic Framework: our goal is to recognize a 
signal of length   within a string representing a DNA 
sequence; to do so, we parse the sequence using windows of 
width   and ask how well the   letters in that window 
correspond to a particular signal.  This means we must assign 
a score to the sequence in each window.  “We assume that we 
have a collection of aligned DNA sequences of the same 
length   and having no gaps, and that we know that all 
members of this collection are sites for binding a particular 
DNA-binding protein.”  We set the scores in analogous 
manner to as we did previously: 

 the probability of a sequence           given 
hypothesis   that it is a binding site is 

 ( | )  ∏   

 

   

               

 If the same sequence is chosen from the random iid 
model   with associated probabilities    , then: 

 ( | )  ∏   

 

   

               

 A comparison of these probabilities is the ratio: 

 ( | )

 ( | )
 ∏

   
   

 

   

 

 A score for the sequence  is the log of this ratio: 

      
 ( | )

 ( | )
 ∑     (       )  ∑   
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In this sum,        (       ) is the contribution to the 

sequence score of the base at position  .  In the case of 50% 
G+C, each          for   in {A,C,G,T}. 

 
For the Escherichia coli promoter data from Appendix C.3 
(p.509) in the region of -10 (where it is thought the consensus 
is TATAAT), we obtain (for just 9 of the many examples): 
 

 
 
Clearly, it is tough to pick out the -10 hexamer, so we do so by 
using the corresponding positional weight matrix: 
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Frequencies: 
 

 

Positional weight matrix (PWM) 
 

 
Position-specific scoring matrix (PSSM) 

 

 
 

(contains scores:        (       ) using all         ) 
 

From bottom of p.5, it is clear that 
 ( | )

 ( | )
   .  To illustrate, 

consider the sequence ACTATAATCG, which (with    ) we 

parse into ACTATA, CTATAA, TATAAT, ATAATC, TAATCG; 

the individuals scores associated with TATAAT are boxed 

above, and lead to                         and 
 ( | )

 ( | )
          .  Incidentally, the maximum value here 

is 4096 since this would occur if each boxed value is 1.0, giving 
individual scores        (      )   , so     . 
 

Note that this model is simplistic in the sense of assuming that 
the state or letter at a given position is unaffected by the state 
or letter at the previous position.  That said, this model 
extends the iid model – that is, that the same distribution 
applied for all positions. 
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9.2.2. Practical Issues: these include: 

 Sometimes care needs to be exercised with first aligning 
the sequences 

 Care also needs to be exercised with choosing  , the 
extent of the site (see Section 9.4) 

 Working with just the training set to discover the model 
can result in small sample size; to correct for this small 
sample size, we use to estimate probabilities: 

    
     

   
   

   
 
 (   )  

 

 
 

This equation adds a “pseudo-count” of 1 for each base 

at each position.  With   
 

   
, it is also a weighted 

average of the usual estimator (
   
 

) and the guess with no 

prior knowledge (
 

 
) 

 With signals of length  , the PWM contains    
parameters (but since the probabilities sum to one, we 
need to estimate    parameters); if the training set 
contains only 6 members, there would be on average 
only 2 observations to estimate each parameter (i.e.,    
observations to estimate    parameters).  Sometimes, 
this is a challenge in a wet lab setting, and we may wish 
to use cross-validation (leave-one-out) techniques. 

 
Computational Example 9.1: uses the site to which GATA-1 
binds; this transcription factor regulates transcription in 
hematopoietic cells.  The string representing its binding site 
has    , and the consensus is (A/T)GATA(A/G) – hence the 

name.  49 human sites are analyzed below: 
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gata=read.csv("c:\\hello.csv",sep=",",header = FALSE) 
bg<-c(0.295,0.205,0.205,0.295) 
 
makepwm.pwm<-function(x,bg) { 
       # x = matrix of N aligned sites coded numerically 
       # bg = vector (1x4) of background base frequencies 
  L<-length(x[1,])      # Number of positions in each site 
  N<-length(x[,1])     # Number of sites 
  pwm<-matrix(rep(1,4*L),nrow=4) 
       # pwm initialized to 1 for each matrix element (pseudocounts) 
  for (j in 1:L) { 
    for (i in 1:N) { 
      k <- x[i,j] 
      pwm[k,j] <- pwm[k,j]+1 
    } 
  } 
  N <- N+4 # Denominator for small sample correction 
  pwm<-pwm/N     # PWM in terms of probabilities 
  log2pwm<-matrix(rep(0,4*L),nrow=4,ncol=L) 
       # Initialize PWM in terms of log(base 2) of p/q 
  for(i in 1:4) { 
    log2pwm[i,]<-log2(pwm[i,]/bg[i]) 
        # Scores for each [nucleotide, position], base 2 
  } 
  return(pwm, log2pwm) 
} 
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tmp.pwm<-makepwm.pwm(gata,bg) 
tmp.pwm 
           [,1]               [,2]             [,3]              [,4]               [,5]               [,6] 
[1,]  0.56603774     0.03773585     0.92452830     0.03773585     0.69811321     0.43396226 
[2,]  0.05660377     0.03773585     0.01886792     0.01886792     0.07547170     0.05660377 
[3,]  0.03773585     0.84905660     0.03773585     0.05660377     0.05660377     0.39622642 
[4,]  0.33962264     0.07547170     0.01886792     0.88679245     0.16981132     0.11320755 
tmp.log2pwm<-makepwm.log2pwm(gata,bg) 
tmp.log2pwm 
             [,1]             [,2]              [,3]           [,4]              [,5]              [,6] 
[1,]    0.9401833      -2.966707        1.648003     -2.966707        1.2427461        0.5568546 
[2,]   -1.8566538      -2.441616      -3.441616      -3.441616      -1.4416163      -1.8566538 
[3,]   -2.4416163       2.050237      -2.441616      -1.856654      -1.8566538       0.9507012 
[4,]    0.2032177      -1.966707      -3.966707       1.587882      -0.7967823      -1.3817448 
 
Note: above, we see: (A/T)GATA(A/G) 

 
Next, let’s find the scores for the 49 reads (binding sites): 
 
calcscore<-function(seq,log2pwm){ 
# seq is a vector representing input DNA numerically 
# log2pwm is a PWM (4xL) with elements as log base 2 
score <- 0 
for (j in 1:length(log2pwm[1,])){ 
score<-score+log2pwm[seq[j],j]} 
return(score) 
} 
gata.score<-rep(0,length(gata[,1])) 
for(i in 1:length(gata[,1])) { 
gata.score[i]<-calcscore(gata[i,],tmp.log2pwm) 
} 
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> signif(gata.score,3) 
 [1]   3.670  6.090  8.420 -0.614  8.420  8.420  8.420  7.290  8.030  8.030  5.620  0.603  7.290 
[14]  7.290  5.320  8.420  6.380  8.030  7.290  8.030  8.420  7.680  4.600  0.588  5.320  5.350 
[27]  8.420  7.290  2.230  8.030  5.230  7.680  8.030  5.250  8.030  8.420  5.350  8.030 -0.254 
[40] -0.687  5.990  7.680  7.680  5.610  5.640  5.990  1.430  8.030  5.990 
 

                       
 

As an exercise, using the above, note that: 

 P(“TTATAG”) = P(“441413”) = (0.33962)*(0.07547)* 
(0.92453)*(0.88679)*(0.69811)*(0.39623) = 0.0058129 
So, S = log2(0.0058129) – log2(0.000457998) = 3.6658 

 P(“TGATAA”) = P(“431411”) = (0.33962)*(0.84906)* 
(0.92453)*(0.88679)*(0.69811)*(0.43396) = 0.0716221 
So, S = log2(0.0716221) – log2(0.000457998) = 7.2889 
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9.3. Representing Signals in DNA: Markov Chains –  
 

PWM suffers from the criticism that it assumes states at 
position   and     are independent, and we now extend to 
the Markov chain strategy used in Chapter 2 – but with the 
extension that the transition matrix from state   to state 
    are no longer assumed to be homogeneous (i.e. this 
matrix depends upon    ); see the following Figure. 
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Think of # of parameters under each of these models.  For 
reads of length  , the # of parameters was   .  For a 
homogeneous Markov model, there are         
parameters.  For our non-homogeneous Markov model, there 
are     (   ).  These respective numbers for     are: 
18, 15 and 63. 
 
 
For this non-homogeneous 
Markov model, Durbin et al 
(1998) give the diagram at 
right to demonstrate the 
process. 

   
 
Following is Computational Example 9.2 (starting in the text 
on p.244): it is helpful to understand the R code to see how 
this non-homogeneous Markov model process works. 
 

gata2=read.table("c:\\gata.txt",header = FALSE) 
length(gata[gata[,1]==1,1]) 
[1] 29 
length(gata[gata[,1]==2,1]) 
[1] 2 
length(gata[gata[,1]==3,1]) 
[1] 1 
length(gata[gata[,1]==4,1]) 
[1] 17 
vectorn<-c(29,2,1,17) 
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vectorn 
[1] 29  2  1 17 
vector1<-(vectorn+1)/(49+4) 
vector1 
[1] 0.56603774 0.05660377 0.03773585 0.33962264 
 

Above is  (initial probabilities for state 1) 
 
matrix0<-matrix(nrow=4,ncol=4,rep(0,16)) 
 
transmatp.matrixp<-function(sites,col,matrix0) { 
     #sites = numeric matrix of n binding sites, w positions 
     #col = column that transition matrix produces 
     #matrix0 = matrix of counts for n = col, initialized to 0 
matrixn<-matrix0 
for(i in 1:length(sites[,1]))  { 
  j<-sites[i,(col-1)] 
  matrixn[j,sites[i,col]]<-matrixn[j,sites[i,col]]+1 
  } 
     #Change counts to probabilities 
matrixp<-matrixn 
matrixp<-matrixp+1 #Adds 1 to every element 
for(i in 1:4)  { 
  matrixp[i,]<-matrixp[i,]/sum(matrixp[i,]) 
    #Denominator=sum(matrixn[i,])+4 
  } 
return(matrixp) 
} 
tmp.matrixn<-transmatp.matrixn(gata,2,matrix0) 
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tmp.matrixn 
          [,1]  [,2]  [,3]   [,4] 
[1,]      1      0     27      1 
[2,]      0      0       2      0 
[3,]      0      0       1      0 
[4,]      0      1     14      2 
 

tmp.matrix2<-transmatp.matrixp(gata,2,matrix0) 
tmp.matrix2 
               [,1]                  [,2]                 [,3]                 [,4] 
[1,] 0.06060606   0.03030303   0.8484848   0.06060606 
[2,] 0.16666667   0.16666667   0.5000000   0.16666667 
[3,] 0.20000000   0.20000000   0.4000000   0.20000000 
[4,] 0.04761905   0.09523810   0.7142857   0.14285714 
 

tmp.matrix3<-transmatp.matrixp(gata,3,matrix0) 
tmp.matrix3 
               [,1]                 [,2]                  [,3]                 [,4] 
[1,] 0.2000000   0.20000000   0.40000000   0.20000000 
[2,] 0.4000000   0.20000000   0.20000000   0.20000000 
[3,] 0.9375000   0.02083333   0.02083333   0.02083333 
[4,] 0.5714286   0.14285714   0.14285714   0.14285714 
 

tmp.matrix4<-transmatp.matrixp(gata,4,matrix0) 
tmp.matrix4 
               [,1]                  [,2]                 [,3]                  [,4] 
[1,] 0.03846154   0.01923077   0.05769231   0.8846154 
[2,] 0.25000000   0.25000000   0.25000000   0.2500000 
[3,] 0.20000000   0.20000000   0.20000000   0.4000000 
[4,] 0.25000000   0.25000000   0.25000000   0.2500000 
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tmp.matrix5<-transmatp.matrixp(gata,5,matrix0) 
tmp.matrix5 
              [,1]                 [,2]                [,3]               [,4] 
[1,] 0.2000000   0.2000000   0.2000000   0.4000000 
[2,] 0.2500000   0.2500000   0.2500000   0.2500000 
[3,] 0.3333333   0.1666667   0.1666667   0.3333333 
[4,] 0.7200000   0.0800000   0.0600000   0.1400000 
 
tmp.matrix6<-transmatp.matrixp(gata,6,matrix0) 
tmp.matrix6 
              [,1]                 [,2]                 [,3]                [,4] 
[1,] 0.4000000   0.07500000   0.4250000   0.1000000 
[2,] 0.4285714   0.14285714   0.1428571   0.2857143 
[3,] 0.1666667   0.16666667   0.5000000   0.1666667 
[4,] 0.5000000   0.08333333   0.2500000   0.1666667 

 

Now, using this model, find P(“TTATAG”) and P(“TGATAA”)  as 
we did above for the PWM model.  It is an exercise to turn 
these probabilities into scores (see text p.248).  Here: 

 P(“TTATAG”) = P(“441413”) = (0.33962)*(0.14296)* 
(0.57143)*(0.88462)*(0.7200)*(0.42500) = 0.007504754 

 P(“TGATAA”) = P(“431411”) = (0.33962)*(0.71429)* 
(0.93750)*(0.88462)*(0.7200)*(0.4000) = 0.057941115 

 

9.4. Entropy and Information Content: there are two 
measures given here.  These are: 
 

 Shannon’s Entropy: measures uncertainty associated with a 
set of possible outcomes.  Discrete RV   has outcomes 

           with probabilities  (  )  (  )    (  ). 
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Then Shannon’s Entropy is defined as  
 

 ( )   ∑  (  )      (  )
 

   
 

 

If we look at a sequence         of iid bases, the entropy 

of the     position is  
 

 (  )   ∑  ( )      ( )
  {       }

 

 

If the outcomes are equally likely (all  ( )   

 
), then 

 (  )    (two bits: one to determine purine versus 
pyramidine, and the other to determine which purine or 
which pyramidine); if instead we know the base is A, so 

 ( )    if    , then  (  )    (no uncertainty). 
 

Information is a measure of how much the entropy is 
reduced after a “signal” has been received: 
 

 (  )                 
 

So, if we move from the equally likely case above to one 
where A is certain, the information is  (  )    bits. 

 

 Relative Entropy (also called Kullback-Leibler distance): 
again let     denote the probability of finding base   at 
position  , and    represents the background distribution of 
bases in a genome or in a random model of the genome.  
Then, the Relative Entropy is 

 

 (    )  ∑        (      )
  {       }
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Notice in the above that    and   correspond to 
distributions (probabilities at each   {       }).  This 
expression is also the expected score since  (  )  
∑        ∑        (      ) . 

 
The reason we consider these two measures is to define the 
extent of signals of a binding site; one approach is to plot 
information content as a function of position along the set of 
sequences.  The DNA sequence logo of lambda operator sites 
(given in Table 9.1, p.231) is below: this is a graphical 
representation of a signal in which the total height 
corresponds to the relative entropy.  Additionally, the height 
of each letter at each position is calculated by multiplying the 
relative entropy at that position by the frequency of the 
corresponding letter.  Logos indicate both the amount of 
relative entropy at each position (the height of the stack of 
four letters) and the relative contribution of each base (the 
relative height of the letter) at that position. 
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9.5. Signals in Eukaryotic Genes: read through. 
 
9.6. Using Scores for Classification: here we’ll use the scores 
from above to classify a candidate string as either a site or 
nonsite.  The null hypothesis H is that the sequence is a site; 

when assigning the sequence to a site or not, we get: 
 

  Assigned Class is: 

  True False 
H is: True correct Type I error 

False Type II error correct 
 
So, a Type I error is rejecting H (concluding the sequence is a 

nonsite) when H is true (the sequence is a site), and a Type II 

error is classifying the sequence as a site when it is not.  Also, 
Sensitivity (  ) and Specificity (  ) are: 
 

      (            ) 
      (             ) 

 

If     is the number of true positive predictions,     is the 
number of false positive predictions,     is the number of 
true negative predictions,     is the number of false negative 
predictions, then we can estimate as follows: 
 

   
   

       
          

   

       
 

 
Given a dataset of sites, scoring gives us a distribution of 
scores for sequences as in the idealized distribution A below; 
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also, given a set of nonsites, the same scoring method may 
give the other distribution B below.  We’ll then place a cutoff 
  (vertical line) and classify any score below   as a nonsite 
and any score above   as a site.  Below, the area under the A 
curve to the left of   (dark shaded region) is the fraction of 
  , and the area under the B curve to the right of   (light 
shaded region) is the fraction of   .  We can move   to lower 
one of these, but we then increase the other. 

            
In practice, we’re not so much interested in the areas above 
but the corresponding numbers: when many more nonsites 
than sites are scored,     tends to be very large and we will 
want to lower the sensitivity and increase the specificity. 
 

Another useful measure is the false discovery rate: 
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Computational Example 9.3: here we classify the GATA-1 sites 
of p.238 using the PWM matrix from C/E 9.1 (p.240); we do so 
by simulating in R. 
 

First, simulate GATA-1 sites: 
 

simmotif<-function(pwm){ 
    # pwm is a PWM matrix of probabilities (4xL) 
L<-length(pwm[1,]) #Number of positions in the motif 
motif<-rep(0,L) #Create and initialize motif vector 
dna<-c(1,2,3,4) #Numeric codes for A, C, G, T 
for (j in 1:L)  { 
    motif[j]<-sample(dna,1,p=pwm[,j]) 
} 
return(motif) 
 
N<-5000 
gata.motifs.score<-rep(0,N) 
    #vector to hold the results of computation 
gata.motifs<-matrix(nrow=N,ncol=6) 
for(i in 1:N) { 
  gata.motifs[i,]<-simmotif(tmp.pwm) 
} 
gata.motifs[1:5,] 
     [,1] [,2] [,3] [,4] [,5] [,6] 
[1,]    4    3    1    4    4    3 
[2,]    1    3    1    4    4    3 
[3,]    4    3    1    4    1    1 
[4,]    4    3    1    4    1    3 
[5,]    1    3    1    4    4    1 
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Now get the scores for the simulated results: 
 

gata.motifs.score<-rep(0,N) 
    #vector to hold the results of computation 
for(i in 1:N) { 
  gata.motifs.score[i]<-calcscore(gata.motifs[i,],tmp.log2pwm) 
} 
 
Now simulate the nonsites (background): 
 

simbg<-function(bg,L){ 
    #bg is a vector of probabilities for A, C, G, T (1x4) 
    #L = length of sites to be simulated 
seq<-rep(0,L) 
dna<-c(1,2,3,4) #Numeric codes for DNA 
seq<-sample(dna,L,replace=T,p=bg) 
return(seq) 
} 
 
back.sim<-matrix(nrow=N,ncol=6) 
for(i in 1:N) { 
  back.sim[i,]<-simbg(bg,6) 
} 
back.sim.score<-rep(0,N) 
for(i in 1:N) { 
  back.sim.score[i]<-calcscore(back.sim[i,],tmp.log2pwm) 
} 
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hist(back.sim.score,prob=T,xlim=c(-20,20),ylim=c(0,0.25),lty=2,xlab="Scores") 
hist(gata.motifs.score,prob=T,xlim=c(-20,20),ylim=c(0,0.25),lty=1,xlab="",add=T) 

         
Lastly, we choose different cutoffs and calculate the 
estimated false negative and false positive rates: 
 

cutoffs<-c(-10:8) 
false.neg<-rep(0,19) 
for(i in 1:19) { 
  false.neg[i]<- 
    length(gata.motifs.score[gata.motifs.score<cutoffs[i]])/N 
} 
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false.pos<-rep(0,19) 
for(i in 1:19) { 
false.pos[i]<-  
      length(back.sim.score[back.sim.score>cutoffs[i]])/N 
} 
plot(cutoffs,false.neg,type="l", 
  xlim=c(-10,10),ylim=c(0,1),lwd=3) 
points(cutoffs,false.pos,type="l",lty=2,lwd=3) 

               
 
See the discussion on pp.258-9. 


