
Quantitative Bioinformatics

1 | P a g e

Chapter 9 Class Notes – Signals in DNA

9.1. The Biological Problem: since proteins cannot “read”, how
do they recognize nucleotides such as A, C, G, T? Although

only approximate, proteins actually recognize specific atoms
or groups of atoms on bases or base pairs; examples:

 Restriction endonuclease recognition sequences

 Binding sites for regulatory proteins

 Elements within replication origins and termination
regions in genomes

 Promoters

Proteins interacting with DNA: (see link
http://en.wikipedia.org/wiki/Protein%E2%80%93DNA_interaction)

http://en.wikipedia.org/wiki/Protein%E2%80%93DNA_interaction

Quantitative Bioinformatics

2 | P a g e

Above image uses bacteriophage lambda cro protein as an
example to illustrate the relationship between binding protein
and binding site structure.

The sites recognized by cro protein are summarized as follows
in the table below (taken from text, p.231). Note that the
sequences of the six operator sites are similar but not
identical.

Quantitative Bioinformatics

3 | P a g e

Identifying Signals in Nucleic Acid Sequences – one approach
is the unsupervised approach: an example of unsupervised
pattern discovery is identifying k-words that are over-
represented in a set of functional sequences such as
promoters (we did this back in 3.6, p.89). Another approach,
supervised learning, includes prior knowledge of the pattern
to be found (our focus in this chapter).

Context example: the MERS (Middle East Respiratory
Syndrome, 2012), is a coronavirus, akin to SARS (Severe Acute
Respiratory Syndrome, 2003). We want to sequence it, to find
the proteins (BLAST), and ultimately to make an antiviral drug.

9.2. Representing Signals in DNA: Independent Positions – the
simplest way to represent signals in DNA (specifically the
binding site) is as a consensus sequence: a string of characters
corresponding to the most common occurrences of bases at
each position. One example (glucocorticoid receptor element,

Quantitative Bioinformatics

4 | P a g e

GRE) follows. The breakdown of the percentages of the 4
nucleotides at each position provides an idea of the amount
of agreement or variability at the specific position.

PWM: Positional Weight Matrix

So, we are transitioning away from the “iid” (independent and
identically distributed) model – we are removing the “id”, and
so the different nucleotide positions do not have to have the
identical distribution here.

The needed steps here are first to gather together and align
representatives of the signal. Then, a training set (collection
of bona fide signals or sites) is used to produce the probability
model. A second bona fide set of signals/sites – called the
validation set – is needed for testing the model. Sometimes
the construction of the model requires a challenge set of
sequences (the set to which the real sequences in the training
set are contrasted). “The process of estimating the
probability distributions from the training set is called
learning in the machine-learning world.”

Quantitative Bioinformatics

5 | P a g e

9.2.1. Probabilistic Framework: our goal is to recognize a
signal of length within a string representing a DNA
sequence; to do so, we parse the sequence using windows of
width and ask how well the letters in that window
correspond to a particular signal. This means we must assign
a score to the sequence in each window. “We assume that we
have a collection of aligned DNA sequences of the same
length and having no gaps, and that we know that all
members of this collection are sites for binding a particular
DNA-binding protein.” We set the scores in analogous
manner to as we did previously:

 the probability of a sequence given
hypothesis that it is a binding site is

 (|) ∏

 If the same sequence is chosen from the random iid
model with associated probabilities , then:

 (|) ∏

 A comparison of these probabilities is the ratio:

 (|)

 (|)
 ∏

 A score for the sequence is the log of this ratio:

 (|)

 (|)
 ∑ () ∑

Quantitative Bioinformatics

6 | P a g e

In this sum, () is the contribution to the

sequence score of the base at position . In the case of 50%
G+C, each for in {A,C,G,T}.

For the Escherichia coli promoter data from Appendix C.3
(p.509) in the region of -10 (where it is thought the consensus
is TATAAT), we obtain (for just 9 of the many examples):

Clearly, it is tough to pick out the -10 hexamer, so we do so by
using the corresponding positional weight matrix:

Quantitative Bioinformatics

7 | P a g e

Frequencies:

Positional weight matrix (PWM)

Position-specific scoring matrix (PSSM)

(contains scores: () using all)

From bottom of p.5, it is clear that
 (|)

 (|)
 . To illustrate,

consider the sequence ACTATAATCG, which (with) we

parse into ACTATA, CTATAA, TATAAT, ATAATC, TAATCG;

the individuals scores associated with TATAAT are boxed

above, and lead to and
 (|)

 (|)
 . Incidentally, the maximum value here

is 4096 since this would occur if each boxed value is 1.0, giving
individual scores () , so .

Note that this model is simplistic in the sense of assuming that
the state or letter at a given position is unaffected by the state
or letter at the previous position. That said, this model
extends the iid model – that is, that the same distribution
applied for all positions.

Quantitative Bioinformatics

8 | P a g e

9.2.2. Practical Issues: these include:

 Sometimes care needs to be exercised with first aligning
the sequences

 Care also needs to be exercised with choosing , the
extent of the site (see Section 9.4)

 Working with just the training set to discover the model
can result in small sample size; to correct for this small
sample size, we use to estimate probabilities:

 ()

This equation adds a “pseudo-count” of 1 for each base

at each position. With

, it is also a weighted

average of the usual estimator (

) and the guess with no

prior knowledge (

)

 With signals of length , the PWM contains
parameters (but since the probabilities sum to one, we
need to estimate parameters); if the training set
contains only 6 members, there would be on average
only 2 observations to estimate each parameter (i.e.,
observations to estimate parameters). Sometimes,
this is a challenge in a wet lab setting, and we may wish
to use cross-validation (leave-one-out) techniques.

Computational Example 9.1: uses the site to which GATA-1
binds; this transcription factor regulates transcription in
hematopoietic cells. The string representing its binding site
has , and the consensus is (A/T)GATA(A/G) – hence the

name. 49 human sites are analyzed below:

Quantitative Bioinformatics

9 | P a g e

gata=read.csv("c:\\hello.csv",sep=",",header = FALSE)
bg<-c(0.295,0.205,0.205,0.295)

makepwm.pwm<-function(x,bg) {
 # x = matrix of N aligned sites coded numerically
 # bg = vector (1x4) of background base frequencies
 L<-length(x[1,]) # Number of positions in each site
 N<-length(x[,1]) # Number of sites
 pwm<-matrix(rep(1,4*L),nrow=4)
 # pwm initialized to 1 for each matrix element (pseudocounts)
 for (j in 1:L) {
 for (i in 1:N) {
 k <- x[i,j]
 pwm[k,j] <- pwm[k,j]+1
 }
 }
 N <- N+4 # Denominator for small sample correction
 pwm<-pwm/N # PWM in terms of probabilities
 log2pwm<-matrix(rep(0,4*L),nrow=4,ncol=L)
 # Initialize PWM in terms of log(base 2) of p/q
 for(i in 1:4) {
 log2pwm[i,]<-log2(pwm[i,]/bg[i])
 # Scores for each [nucleotide, position], base 2
 }
 return(pwm, log2pwm)
}

Quantitative Bioinformatics

10 | P a g e

tmp.pwm<-makepwm.pwm(gata,bg)
tmp.pwm
 [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.56603774 0.03773585 0.92452830 0.03773585 0.69811321 0.43396226
[2,] 0.05660377 0.03773585 0.01886792 0.01886792 0.07547170 0.05660377
[3,] 0.03773585 0.84905660 0.03773585 0.05660377 0.05660377 0.39622642
[4,] 0.33962264 0.07547170 0.01886792 0.88679245 0.16981132 0.11320755
tmp.log2pwm<-makepwm.log2pwm(gata,bg)
tmp.log2pwm
 [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.9401833 -2.966707 1.648003 -2.966707 1.2427461 0.5568546
[2,] -1.8566538 -2.441616 -3.441616 -3.441616 -1.4416163 -1.8566538
[3,] -2.4416163 2.050237 -2.441616 -1.856654 -1.8566538 0.9507012
[4,] 0.2032177 -1.966707 -3.966707 1.587882 -0.7967823 -1.3817448

Note: above, we see: (A/T)GATA(A/G)

Next, let’s find the scores for the 49 reads (binding sites):

calcscore<-function(seq,log2pwm){
seq is a vector representing input DNA numerically
log2pwm is a PWM (4xL) with elements as log base 2
score <- 0
for (j in 1:length(log2pwm[1,])){
score<-score+log2pwm[seq[j],j]}
return(score)
}
gata.score<-rep(0,length(gata[,1]))
for(i in 1:length(gata[,1])) {
gata.score[i]<-calcscore(gata[i,],tmp.log2pwm)
}

Quantitative Bioinformatics

11 | P a g e

> signif(gata.score,3)
 [1] 3.670 6.090 8.420 -0.614 8.420 8.420 8.420 7.290 8.030 8.030 5.620 0.603 7.290
[14] 7.290 5.320 8.420 6.380 8.030 7.290 8.030 8.420 7.680 4.600 0.588 5.320 5.350
[27] 8.420 7.290 2.230 8.030 5.230 7.680 8.030 5.250 8.030 8.420 5.350 8.030 -0.254
[40] -0.687 5.990 7.680 7.680 5.610 5.640 5.990 1.430 8.030 5.990

As an exercise, using the above, note that:

 P(“TTATAG”) = P(“441413”) = (0.33962)*(0.07547)*
(0.92453)*(0.88679)*(0.69811)*(0.39623) = 0.0058129
So, S = log2(0.0058129) – log2(0.000457998) = 3.6658

 P(“TGATAA”) = P(“431411”) = (0.33962)*(0.84906)*
(0.92453)*(0.88679)*(0.69811)*(0.43396) = 0.0716221
So, S = log2(0.0716221) – log2(0.000457998) = 7.2889

Quantitative Bioinformatics

12 | P a g e

9.3. Representing Signals in DNA: Markov Chains –

PWM suffers from the criticism that it assumes states at
position and are independent, and we now extend to
the Markov chain strategy used in Chapter 2 – but with the
extension that the transition matrix from state to state
 are no longer assumed to be homogeneous (i.e. this
matrix depends upon); see the following Figure.

Quantitative Bioinformatics

13 | P a g e

Think of # of parameters under each of these models. For
reads of length , the # of parameters was . For a
homogeneous Markov model, there are
parameters. For our non-homogeneous Markov model, there
are (). These respective numbers for are:
18, 15 and 63.

For this non-homogeneous
Markov model, Durbin et al
(1998) give the diagram at
right to demonstrate the
process.

Following is Computational Example 9.2 (starting in the text
on p.244): it is helpful to understand the R code to see how
this non-homogeneous Markov model process works.

gata2=read.table("c:\\gata.txt",header = FALSE)
length(gata[gata[,1]==1,1])
[1] 29
length(gata[gata[,1]==2,1])
[1] 2
length(gata[gata[,1]==3,1])
[1] 1
length(gata[gata[,1]==4,1])
[1] 17
vectorn<-c(29,2,1,17)

Quantitative Bioinformatics

14 | P a g e

vectorn
[1] 29 2 1 17
vector1<-(vectorn+1)/(49+4)
vector1
[1] 0.56603774 0.05660377 0.03773585 0.33962264

Above is (initial probabilities for state 1)

matrix0<-matrix(nrow=4,ncol=4,rep(0,16))

transmatp.matrixp<-function(sites,col,matrix0) {
 #sites = numeric matrix of n binding sites, w positions
 #col = column that transition matrix produces
 #matrix0 = matrix of counts for n = col, initialized to 0
matrixn<-matrix0
for(i in 1:length(sites[,1])) {
 j<-sites[i,(col-1)]
 matrixn[j,sites[i,col]]<-matrixn[j,sites[i,col]]+1
 }
 #Change counts to probabilities
matrixp<-matrixn
matrixp<-matrixp+1 #Adds 1 to every element
for(i in 1:4) {
 matrixp[i,]<-matrixp[i,]/sum(matrixp[i,])
 #Denominator=sum(matrixn[i,])+4
 }
return(matrixp)
}
tmp.matrixn<-transmatp.matrixn(gata,2,matrix0)

Quantitative Bioinformatics

15 | P a g e

tmp.matrixn
 [,1] [,2] [,3] [,4]
[1,] 1 0 27 1
[2,] 0 0 2 0
[3,] 0 0 1 0
[4,] 0 1 14 2

tmp.matrix2<-transmatp.matrixp(gata,2,matrix0)
tmp.matrix2
 [,1] [,2] [,3] [,4]
[1,] 0.06060606 0.03030303 0.8484848 0.06060606
[2,] 0.16666667 0.16666667 0.5000000 0.16666667
[3,] 0.20000000 0.20000000 0.4000000 0.20000000
[4,] 0.04761905 0.09523810 0.7142857 0.14285714

tmp.matrix3<-transmatp.matrixp(gata,3,matrix0)
tmp.matrix3
 [,1] [,2] [,3] [,4]
[1,] 0.2000000 0.20000000 0.40000000 0.20000000
[2,] 0.4000000 0.20000000 0.20000000 0.20000000
[3,] 0.9375000 0.02083333 0.02083333 0.02083333
[4,] 0.5714286 0.14285714 0.14285714 0.14285714

tmp.matrix4<-transmatp.matrixp(gata,4,matrix0)
tmp.matrix4
 [,1] [,2] [,3] [,4]
[1,] 0.03846154 0.01923077 0.05769231 0.8846154
[2,] 0.25000000 0.25000000 0.25000000 0.2500000
[3,] 0.20000000 0.20000000 0.20000000 0.4000000
[4,] 0.25000000 0.25000000 0.25000000 0.2500000

Quantitative Bioinformatics

16 | P a g e

tmp.matrix5<-transmatp.matrixp(gata,5,matrix0)
tmp.matrix5
 [,1] [,2] [,3] [,4]
[1,] 0.2000000 0.2000000 0.2000000 0.4000000
[2,] 0.2500000 0.2500000 0.2500000 0.2500000
[3,] 0.3333333 0.1666667 0.1666667 0.3333333
[4,] 0.7200000 0.0800000 0.0600000 0.1400000

tmp.matrix6<-transmatp.matrixp(gata,6,matrix0)
tmp.matrix6
 [,1] [,2] [,3] [,4]
[1,] 0.4000000 0.07500000 0.4250000 0.1000000
[2,] 0.4285714 0.14285714 0.1428571 0.2857143
[3,] 0.1666667 0.16666667 0.5000000 0.1666667
[4,] 0.5000000 0.08333333 0.2500000 0.1666667

Now, using this model, find P(“TTATAG”) and P(“TGATAA”) as
we did above for the PWM model. It is an exercise to turn
these probabilities into scores (see text p.248). Here:

 P(“TTATAG”) = P(“441413”) = (0.33962)*(0.14296)*
(0.57143)*(0.88462)*(0.7200)*(0.42500) = 0.007504754

 P(“TGATAA”) = P(“431411”) = (0.33962)*(0.71429)*
(0.93750)*(0.88462)*(0.7200)*(0.4000) = 0.057941115

9.4. Entropy and Information Content: there are two
measures given here. These are:

 Shannon’s Entropy: measures uncertainty associated with a
set of possible outcomes. Discrete RV has outcomes

 with probabilities () () ().

Quantitative Bioinformatics

17 | P a g e

Then Shannon’s Entropy is defined as

 () ∑ () ()

If we look at a sequence of iid bases, the entropy

of the position is

 () ∑ () ()
 { }

If the outcomes are equally likely (all ()

), then

 () (two bits: one to determine purine versus
pyramidine, and the other to determine which purine or
which pyramidine); if instead we know the base is A, so

 () if , then () (no uncertainty).

Information is a measure of how much the entropy is
reduced after a “signal” has been received:

 ()

So, if we move from the equally likely case above to one
where A is certain, the information is () bits.

 Relative Entropy (also called Kullback-Leibler distance):
again let denote the probability of finding base at
position , and represents the background distribution of
bases in a genome or in a random model of the genome.
Then, the Relative Entropy is

 () ∑ ()
 { }

Quantitative Bioinformatics

18 | P a g e

Notice in the above that and correspond to
distributions (probabilities at each { }). This
expression is also the expected score since ()
∑ ∑ () .

The reason we consider these two measures is to define the
extent of signals of a binding site; one approach is to plot
information content as a function of position along the set of
sequences. The DNA sequence logo of lambda operator sites
(given in Table 9.1, p.231) is below: this is a graphical
representation of a signal in which the total height
corresponds to the relative entropy. Additionally, the height
of each letter at each position is calculated by multiplying the
relative entropy at that position by the frequency of the
corresponding letter. Logos indicate both the amount of
relative entropy at each position (the height of the stack of
four letters) and the relative contribution of each base (the
relative height of the letter) at that position.

Quantitative Bioinformatics

19 | P a g e

9.5. Signals in Eukaryotic Genes: read through.

9.6. Using Scores for Classification: here we’ll use the scores
from above to classify a candidate string as either a site or
nonsite. The null hypothesis H is that the sequence is a site;

when assigning the sequence to a site or not, we get:

 Assigned Class is:

 True False
H is: True correct Type I error

False Type II error correct

So, a Type I error is rejecting H (concluding the sequence is a

nonsite) when H is true (the sequence is a site), and a Type II

error is classifying the sequence as a site when it is not. Also,
Sensitivity () and Specificity () are:

 ()
 ()

If is the number of true positive predictions, is the
number of false positive predictions, is the number of
true negative predictions, is the number of false negative
predictions, then we can estimate as follows:

Given a dataset of sites, scoring gives us a distribution of
scores for sequences as in the idealized distribution A below;

Quantitative Bioinformatics

20 | P a g e

also, given a set of nonsites, the same scoring method may
give the other distribution B below. We’ll then place a cutoff
 (vertical line) and classify any score below as a nonsite
and any score above as a site. Below, the area under the A
curve to the left of (dark shaded region) is the fraction of
 , and the area under the B curve to the right of (light
shaded region) is the fraction of . We can move to lower
one of these, but we then increase the other.

In practice, we’re not so much interested in the areas above
but the corresponding numbers: when many more nonsites
than sites are scored, tends to be very large and we will
want to lower the sensitivity and increase the specificity.

Another useful measure is the false discovery rate:

Quantitative Bioinformatics

21 | P a g e

Computational Example 9.3: here we classify the GATA-1 sites
of p.238 using the PWM matrix from C/E 9.1 (p.240); we do so
by simulating in R.

First, simulate GATA-1 sites:

simmotif<-function(pwm){
 # pwm is a PWM matrix of probabilities (4xL)
L<-length(pwm[1,]) #Number of positions in the motif
motif<-rep(0,L) #Create and initialize motif vector
dna<-c(1,2,3,4) #Numeric codes for A, C, G, T
for (j in 1:L) {
 motif[j]<-sample(dna,1,p=pwm[,j])
}
return(motif)

N<-5000
gata.motifs.score<-rep(0,N)
 #vector to hold the results of computation
gata.motifs<-matrix(nrow=N,ncol=6)
for(i in 1:N) {
 gata.motifs[i,]<-simmotif(tmp.pwm)
}
gata.motifs[1:5,]
 [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 4 3 1 4 4 3
[2,] 1 3 1 4 4 3
[3,] 4 3 1 4 1 1
[4,] 4 3 1 4 1 3
[5,] 1 3 1 4 4 1

Quantitative Bioinformatics

22 | P a g e

Now get the scores for the simulated results:

gata.motifs.score<-rep(0,N)
 #vector to hold the results of computation
for(i in 1:N) {
 gata.motifs.score[i]<-calcscore(gata.motifs[i,],tmp.log2pwm)
}

Now simulate the nonsites (background):

simbg<-function(bg,L){
 #bg is a vector of probabilities for A, C, G, T (1x4)
 #L = length of sites to be simulated
seq<-rep(0,L)
dna<-c(1,2,3,4) #Numeric codes for DNA
seq<-sample(dna,L,replace=T,p=bg)
return(seq)
}

back.sim<-matrix(nrow=N,ncol=6)
for(i in 1:N) {
 back.sim[i,]<-simbg(bg,6)
}
back.sim.score<-rep(0,N)
for(i in 1:N) {
 back.sim.score[i]<-calcscore(back.sim[i,],tmp.log2pwm)
}

Quantitative Bioinformatics

23 | P a g e

hist(back.sim.score,prob=T,xlim=c(-20,20),ylim=c(0,0.25),lty=2,xlab="Scores")
hist(gata.motifs.score,prob=T,xlim=c(-20,20),ylim=c(0,0.25),lty=1,xlab="",add=T)

Lastly, we choose different cutoffs and calculate the
estimated false negative and false positive rates:

cutoffs<-c(-10:8)
false.neg<-rep(0,19)
for(i in 1:19) {
 false.neg[i]<-
 length(gata.motifs.score[gata.motifs.score<cutoffs[i]])/N
}

Quantitative Bioinformatics

24 | P a g e

false.pos<-rep(0,19)
for(i in 1:19) {
false.pos[i]<-
 length(back.sim.score[back.sim.score>cutoffs[i]])/N
}
plot(cutoffs,false.neg,type="l",
 xlim=c(-10,10),ylim=c(0,1),lwd=3)
points(cutoffs,false.pos,type="l",lty=2,lwd=3)

See the discussion on pp.258-9.

