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Chapter 10 Class Notes – Similarity, Distance and Clustering 
 
10.1. The Biological Problem: focus on clustering (identifying 
groups of like objects) and classification (assigning objects into 
predetermined categories); OTU = operational taxonomic 
units (in evolutionary studies) 
 

  p columns for “characters” 
   

 
  

m row for 
“objects” 
(e.g., genes 
or OTU) 

    
 “states of 

characters” 
  

    
 

In the next chapter, we’ll study spotted microarray & oligo-
nucleotide array technologies: “the purpose of clustering in 
this case is to identify and group together (cluster) genes 
having similar expression patterns.  Similar expression 
patterns may indicate that the genes participate in similar 
biological processes or that they respond to similar biological 
controls.”  Characters above are like “variables” in statistics; 
since we measure several characters on the same object, we 
will need multivariate statistical methods (‘distance’, etc.) 
 

10.2. Characters: these can be: 

 Qualitative or categorical characters, which differ in type 
– the color of mice (2 = black, 1 = brown, 0 = white), or 
nucleotide at a certain position (1 = A, 2 = C, 3 = G, 4 = T); 
it doesn’t make sense to average these 
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 Quantitative (discrete or continuous) characters, which 
are measured on a numerical scale – number of tail 
vertebrae in a dromaeosaur skeleton (discrete) or the 
length of this tail in cm (continuous) 

 Dichotomous characters, which take one of two states – 
male/female, present/absent, or purine/pyrimidine.  This 
last turns a categorical into a dichotomous character, and 
a quantitative becomes dichotomous via “low/high” 

 

 
 
Nucleotide strings   and   (such as ‘Hy’ and ‘Pa’ in Table 10.1 
above: aligned portions of primate cytochrome oxidase 
subunit II DNA sequences) correspond to 2 objects.  Here, 
‘similarity’ can be measured by counting the number or 
percentage of nucleotide matches (this is done below for each 
pair).  The edit distance, or Levenshtein distance, is the 
minimum number of indels or substitutions required to 
transform one string into another.  Thus, the “distance” from 
‘Hy’ to ‘Pa’ is 0.150 and that from ‘Pa’ to ‘Ho’ is 0.067.  But this 
measure is not unique since we can also measure distance at 
the amino acid (instead of nucleotide) level – or even the 
protein level. 
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The corresponding amino acids are given below at left. 
 

 

 
 
Strings of 20 amino acids 
corresponding to above 60 
nucleotides 
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In comparing measured distance at the nucleotide (nt) versus 
amino acid (aa) level, notice that the percentage differences 
between the different pairs is not the same; comparing ‘Hy’ 
and ‘Ho”, the distance is 0.15 at the nt level but 0.05 at the aa 
level; selection tends to conserve the sequence of amino acids 
 

 
 

But “when dealing with protein sequences, we might elect to 
count not amino acid differences but the minimum number of 
base [nt] changes need to convert one residue to another.”  
So, in comparing ‘Hy’ and ‘Pa’ above in residue 14 above, Asn 
(N) is changed to Ser (S), but this represents two nucleotide 
changes (AAC  AGT).  Finally, note that when Asn replaces 
Ser or Ser replaces Thr, all three are uncharged polar amino 
acids, so “each of these protein regions has an identical string 
of physicochemical properties.”  So, before we can measure 
“distance,” we need to clearly think through exactly how this 
is to be done. 
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10.3. Similarity and Distance: these metrics measure how 
close or distant objects are.  Consider the example below at 
left (where 1 = present and 0 = absent).  
 

 

 

    

    
 
One measure of similarity between the OTUs is to count the 
number of matches and mismatches as above at right.  Once 
we have the above table, we can then calculate the simple 
matching coefficient: 
 

    
   

       
 

 
In the case of Canary and Goldfish,      

 
     .  We then 

put these together into a similarity matrix: 
 

 Dog Turtle Canary Goldfish 
Dog --- --- --- --- 
Turtle 0.25 --- --- --- 

Canary 0.25 1.00 --- --- 
Goldfish 0 0.75 0.75 --- 
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The above notwithstanding, sometimes negative matches 
convey no additional information about relationships, and an 
alternate similarity measure is Jaccard’s coefficient: 
 

    
 

     
 

 

In this case, dissimilarities are then measured as: 
 

    
   

     
       

 

Dissimilarity measures or metrics may have properties: 

 Symmetry:         for all     

 Distinguishability:       if and only if     

 Triangle Inequality:             for all       

 

 
 
Above at left is the Euclidean distance in two dimensions: 
 

    √         
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When there are p dimensions (characters), the above is: 
 

    √∑          
 

 

   
 

 

An alternative is the city-block (or Manhattan) metric: 
 

    ∑ |       |
 

   
 

 

This latter metric is illustrated above at right; notice the 
distances from A to B and from A to B’ are the same here; in 
comparing nucleotide sequences, we usually use the city-
block metric. 
 

Before we start, in situations such as measuring mRNA 
expression levels with microarrays (next chapter), we need to 
scale the coordinate values – they then become 
dimensionless.  Let     be the value of character   for OTU  ; 
then the standardized or scaled character values are: 
 

   
  

   

  
           

 

Here,    is the SD of column   (character  ). 
 

The above scaling is for each column.  But sometimes (e.g. in 
the case of microarray experiments & rows are genes), the 
characters correspond to a time series for which the 
expression ratios as a function of time are measured.  “The 
actual amplitude of the measurement at any time point may 
be less important than the pattern of values for all points 
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taken as a whole.  In this case, the scaling should be over all 
time points (characters) for each gene (object).  In other 
words, the scaling is applied to rows rather than columns.”  
 
10.4. Clustering: for hierarchical clustering (considered here – 
another type, involving optimization, is in §10.5), we can 
choose from three types -  
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Here, we successively join together or split objects into groups 
based on some measure of distance.  Using one of these 
distance measures, we first produce the     symmetric 

distance matrix    [   ]; this is done below at left for the 

primate data (at the nucleotide level).  The second step is to 
find the OTUs which have the smallest distance, and collapse 
these two into one group, then determining the new distance 
matrix   ; this is where the choice of the distance metric 
(single, complete, average) comes in.  For the primate 
example, this produces the distance matrix below at right 
(top), and               {          }      .  We 
then repeat the last step to completion; here, we next 
collapse Go and PaHo into one group, GoPaHo, and find the 
distance to Hy from    by    {              }      . 
 

 

 

 
 
This process produces the dendrogram given below (produced 
using R and the following code). 
 
s1<-c(3,2,2,2,4,2,4,4,2,2,4,1,1,2,1,2,4,2,1,2,1,1,2,1,1,1,1,2,4, 
1,1,2,2,1,1,2,1,2,4,1,1,2,1,4,4,1,2,3,3,1,4,3,2,2,2,1,1,3,1,1) 
s2<-c(3,2,2,2,4,4,4,4,2,2,4,1,1,2,1,2,4,2,1,2,1,1,2,1,1,1,1,2,4, 
1,1,2,4,1,1,4,1,2,4,1,3,4,1,4,4,4,2,1,3,1,2,3,2,2,2,1,3,3,1,1) 
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s3<-c(3,2,2,2,4,4,4,4,2,2,4,1,1,2,1,2,4,2,1,2,1,1,2,1,1,1,3,2,4, 
1,1,2,4,1,3,2,1,2,2,1,1,2,1,4,2,4,2,1,3,1,2,3,2,2,2,1,1,3,1,1) 
s4<-c(3,2,2,2,4,4,4,4,2,2,4,1,1,2,1,2,4,2,1,2,1,1,2,1,1,1,1,2,4, 
1,1,2,4,1,1,4,1,2,4,1,1,2,1,4,2,4,2,1,3,1,2,3,2,4,2,1,3,3,1,1) 
s5<-c(3,2,2,2,4,4,4,4,2,2,4,1,1,2,1,2,4,2,1,2,1,1,2,3,1,1,1,2,4, 
2,1,2,2,1,1,2,1,2,4,1,1,2,1,4,2,4,2,1,3,1,4,3,2,2,2,1,1,3,1,3) 
seqs<-rbind(s1,s2,s3,s4,s5) 
 
seqdist<-function(x,n) 
{ 
dmat<-matrix(nrow=n,ncol=n) 
for(i in 1:n){ 
for (j in 1:n){ 
dmat[i,j]<-length(x[j,][x[j,]!=x[i,]])/length(x[1,])}} 
return(dmat) 
} 
dapes<-seqdist(seqs,4) 
dapes 
               [,1]             [,2]              [,3]              [,4] 
[1,]   0.000000   0.150000   0.150000   0.150000 
[2,]   0.150000   0.000000   0.133333   0.066667 
[3,]   0.150000   0.133333   0.000000   0.100000 
[4,]   0.150000   0.066667   0.100000   0.000000 
 
dapes1<-as.dist(dapes,diag=F,upper=F) 
species=c("Hy","Pa","Go","Ho") 
plclust(hclust(dapes1,"single"),labels=species,xlab="",sub="") 
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Now work through to find the dendrogram here using the 
complete linkage measure.  In practice, we’ll have much more 
data, and need to think through the number of clusters.   
 

In looking at the dendrogram 
at right, most of us would 
identify three clusters: AB, 
CD, and EF.  If we set the 
criterion at distances 
between 0.4 and 0.3, we 
would define two clusters.  
So, the number of clusters is 
therefore somewhat 
arbitrary.  
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In producing dendrograms, here are some key considerations: 

 The choice of distance measure is important 

 Errors can occur and can be carried forward 

 No one inter-cluster distance measure is “best” – in head-
to-head tests, single-linkage was least successful and 
average-linkage did well 

 Important issues include: robustness of the grouping 
method (i.e., the method works well under a variety of 
input data and initial parameters), clustering methods 
need to be stable (p.278); we could use “jackknife” 
methods as well (leaving each of the   OTUs out in turn) 

 “Building phylogenetic trees is procedurally similar to 
clustering but with biological models included.” 

 
10.5. K-means: the # of groups/clusters ( ) is prespecified.  
The relevant distance here is the distance of each OTU to the 
cluster center or centroid.  Thus, OTUs are allocated into the k 
clusters such that the within-cluster sums of squares of 
distances from cluster centroids (within-ss), summed over all 

clusters, is minimized.  Within cluster j, within ss = ∑    
  

   
, 

and total within-ss is   ∑ ∑    
  

   
 
   .  This is illustrated 

below at left for     (centroids are circles) and     
(centroids are squares); increasing k from 2 to 3 splits the 
larger cluster at the bottom into two cluster (but with the top 
cluster unchanged), and the value of   for     will be much 
less than for    .  The K-means calculation involves trying 
different centroid positions and iteratively testing each OTU 
for its distance to one of the centroids. 
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The K-means steps are: 

1. Arbitrarily partition the OTUs into k clusters 
2. Calculate the centroid of each cluster 
3. Assign/reassign each OTU to that cluster whose centroid 

is the closest (using Euclidean distance) 
4. Recalculate the new centroids 
5. Repeat steps 3 & 4 until no change in memberships 

 

A simple example is plotted above at right.  Suppose we start 
by putting       into cluster   and     into cluster   ; then, 
the respective centroids are             and          , and 
we get distances: 
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We then reassign   to cluster II, recalculate the new centroids 
and above distances, and find that this is optimal: the clusters 
are then {A,B} and {C,D,E}: new centroids are              
and              , and the distances are now: 
 

                           
                           
                           
                            
                           

 
The second example involves living and fossil hominoid 
species and using characters brain mass and body mass; 
notice in the data below that the scales for body mass (kg) 
and brain mass (g) are very different – hence we need to scale 
the data first: 
 

body.mass<-c(53,57,55,58,42,36,44,36,37,45,105) 
brain.mass<-c(1355,1016,804,854,597,502,488,457,384,395,505) 
raw.dat<-cbind(body.mass,brain.mass) 
scaled.dat<-raw.dat 
scaled.dat[,1]<-raw.dat[,1]/sqrt(var(raw.dat[,1])) 
scaled.dat[,2]<-raw.dat[,2]/sqrt(var(raw.dat[,2])) 
species<-c("H.sapiens","H.erectusL","H.erectusE","H.ergaster", 
"H.habilis","A.robustus","A.boisei","A.africanus","A.afarensis", 
"P.troglodytes","G.gorilla") 
body<-scaled.dat[,1] 
brain<-scaled.dat[,2] 
h<-mean(c(4.425578,1.254186)) 
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x1<-x2<-mean(body) 
y1<-mean(brain[brain<h]) 
y2<-mean(brain[brain>h]) 
in.cent<-cbind(c(x1,x2),c(y1,y2)) 
in.cent 
             [,1]             [,2] 
[1,] 2.638996   1.809424 
[2,] 2.638996   3.871972 
 
k.dat2<-kmeans(scaled.dat,in.cent,iter.max=100) 
k.dat2 
 
K-means clustering with 2 clusters of sizes 6, 5 
 
Cluster means: 
  body.mass brain.mass 
1  2.044293   1.536704 
2  3.352640   2.961708 
 
Clustering vector: 
 [1] 2 2 2 2 1 1 1 1 1 1 2 
 
Within cluster sum of squares by cluster: 
[1]   0.5517516    9.2416832 
 (between_SS / total_SS =  51.0 %) 
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k.dat3<-kmeans(scaled.dat,3,iter.max=100) 
k.dat3 
 
K-means clustering with 3 clusters of sizes 4, 6, 1 
 
Cluster means: 
  body.mass brain.mass 
1  2.849233   3.289788 
2  2.044293   1.536704 
3  5.366268   1.649385 
 
Clustering vector: 
 [1] 1 1 1 1 2 2 2 2 2 2 3 
 
Within cluster sum of squares by cluster: 
[1]   2.0205711    0.5517516    0.0000000 
 (between_SS / total_SS =  87.1 %) 

 
For the     case, we provided 
a     matrix identifying initial 
cluster centers,             
and            .  Here, since 
G.gorilla is combined with the 
first four    members,       .  
For the     case, we see three 
distinct groups (see graph at 
right) and       . 
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An important concern is how many clusters should there be.  
The number is somewhat arbitrary (so beware), but the plot 
below helps: note that the “elbow” occurs at    , so most 
researchers would choose this value (i.e. choose    ). 
 

  
 
10.6. Classification: the current chapter extends what we did 
in the last chapter, where we classified according to a score 
(derived from PWM/PSSM matrices or from Markov transition 
matrices), and determined a cut-off taking account of 
sensitivity and specificity. 
 

Now, we consider an OTU not used in the classification rule, 
and we wish to determine to which cluster it should be 
assigned.  For K-means, this is simple: find the Euclidean 
distance from this new OTU to the centroids of the k clusters, 
and add it to the nearest cluster.  In the hierarchical case, we 
add the new OTU into the mix and redo the clustering.  It is 
then telling both if the clusters remain unchanged (easy case) 
and when they do change (clustering may not be robust). 


