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Chapter 11 Class Notes –  
Measuring Expression of Genome Information 

 
11.1. The Biological Problem: “even though all genes are 
generally found in all cells, not all genes are expressed at any 
one time, nor are all genes expressed in every cell,” and genes 
may be differentially expressed over the cell cycle. 
 

11.3. Principles and Practice of Microarray Analysis: spotted or 
oligonucleotide microarrays: area is approximately 1-2 cm2 
 
11.3.1. Basics of Nucleic Acids Used for Microarrays:  from 
text: a probe is a particular DNA sequence corresponding 
(complementary) to an mRNA whose abundance, presence or 
absence within a sample is being evaluated; the target is the 
complex mixture of nucleic acid species being tested for the 
presence or absence of sequences related to the probe 
sequence… In microarray experiments, the probes are 
immobilized in a grid of positions on a substrate (usually 
glass)… Each gridded probe sample is a feature, which is 
indexed by its position within the array.  The target depends 
upon the organism, the tissue, and the physiological 
conditions of the tissue at the time that the RNA is extracted; 
the target molecules may be radioactively labelled, but now it 
is far more common for them to be labelled with fluorescent 
dyes Cy3 or Cy5.  The specific interaction between probe and 
target species is based upon DNA hybridization (the two 
strands need not come from the original duplex molecule).  
When labelled target molecules hybridize to a particular 
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feature, the fluorescent label on the target species makes the 
feature capable of fluorescence when it is excited by light of 
an appropriate wavelength.  The amplitude of the signal is 
proportional to the amount of hybridized target species.  If 
the species is rare, the signal is correspondingly faint. 
 

                       
 

11.3.2. Making and Using Spotted Microarrays:  Design is as 
above.  Often we wish to understand how gene expression 
differs for two different conditions (e.g., malignant versus 
normal cells – above X and Y).  The amount of fluorescence 
intensity corresponding to each condition at each microarray 
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feature can therefore be detected.  If cDNA derived from RNA 
expressed during condition X is labelled with Cy3 and cDNA 
derived from condition Y is labelled with Cy5, and excess of 
green over red fluorescence at any feature (gene) indicates 
that the gene corresponding to that spot is more highly 
expressed under condition X than under condition Y. 
 

Problems can arise as below (B).  In A, studying dsdD mutant 
D. melanogaster, red spots correspond to genes whose 
expression is higher in the mutant, and green spots 
correspond to genes with reduced expression in the mutant.  
Panel B shows some problems that can appear in such 
experiments (see p.302). 
 

                
 

11.4. Analysis of Microarray Data: “we analyze either absolute 
amounts of transcripts in cells or, more commonly, the ratios 
of these amounts under two different experimental 
conditions.”  We need to first process the data to obtain a 
gene expression matrix (GEM): most commonly, n rows for 
each gene or feature and m columns one for each condition or 
time point; the content of each element of the GEM is either a 
fluorescence intensity or a ratio of 2 fluorescence intensities. 
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11.4.1. Normalization: important – there usually is a dye bias 
that needs to be corrected in a process called normalization; 
“in fact, Cy5 intensities are systematically lower than Cy3 
intensities when equivalent amounts of sample are present.”  
If linearly related, then                 

 

 
      .  

There are two approaches: (1) global normalization (only 
sometimes valid) or (2) intensity-dependent normalization 
(more complicated usually but worth the effort) as below.  (1) 
is often invalid since the dye bias in     

 

 
 is not constant but 

varies with intensity; thus, we produce a MA plot by first 
finding        

 

 
             and (log2 of geometric 

mean intensity)    

 
        

 
(           ). 

 

Computational Example 11.1: dsxD mutant Drosophila, with 11 
usable blocks and with A and M in columns 5 and 6; since 

 ̅         we get the estimate  ̂                .   
 

micro2=read.csv("c:\\CE11p1a.csv",sep=",",header = TRUE) 
mean(micro2[,6]) 
[1]   0.2903073 
2^mean(micro2[,6]) 
[1]   1.222901 
 

This is used in global normalization (surprisingly R intensity is 
on average 22.3% higher than the G intensity), but we prefer 
to do the intensity-dependent normalization: 
 

par(pin=c(4,2),mfrow=c(3,1)) 
plot(micro2[,5],micro2[,6],pch=".",xlab="A",ylab="M") 
 

Plot below shows an upward (nonlinear?) trend: 
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Next, fit the trend curve in B (above) via LOESS regression, 
remove the trend and keep the residuals (above in C) 
 

MA.ls<-loess(micro2[,6]~micro2[,5]) 
#Note argument order: dependent variable is listed first. 
tmp<-predict(MA.ls,micro2[,5]) 
# tmp is a vector of predicted values 
# predict is a standard R function 
plot(micro2[,5],tmp,pch=".",xlab="A",ylab="M",ylim=c(-8,6))  
#Plot with same scale used in first panel. 
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MA.norm<-micro2 
MA.norm[,6]<-MA.norm[,6]-tmp  
#Subtracting predicted value 
mean(MA.norm[,6]) 
[1] -0.003620709 
plot(MA.norm[,5],MA.norm[,6],pch=".",xlab="A",ylab="M", 
ylim=c(-8,6)) 
 
Now we have normalized the data (ready for statistical 
analysis) so that the mean of normalized     

 

 
 is near zero. 

 
11.4.2. Statistical Background: review of SD and two-sample 
pooled t-test is on pp.308-10, but note that “for microarray 
experiments, the number of replicates,  , will often be a small 
number much less than 10.”  “The null hypothesis would be 
that the expression level is no different in cancer cells 
compared with unaffected cells, and we would want to 
perform a hypothesis test to determine whether the observed 
mean value for   

  is significantly different from the mean 

value for   
 .”     :   

 ̅ 
   ̅ 

 

√
  
 

  
 

  
 

  

 

Pooled t:   
 ̅ 

   ̅ 
 

  √
 

  
 

 

  

            

Note: since we’re testing many, many genes, we can easily 
find a spurious result (false positive), so it’s common in this 
multiple hypothesis testing situation to us a Bonferroni 

correction such as using   
  

 
      ; e.g.,         
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11.4.3. Experimental Design: wish to compare A and B; 
comparing with a reference R is often inefficient: 
 

                   
 

                   
 

11.5. Data Interpretation: our goals are to: 

 Annotate anonymous genes based on their expression 
patterns over a number of conditions.  If gene j shows a 
pattern similar to another/others, then we might 
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hypothesize that j functions in a similar manner or along 
a common pathway; called “guilt by association” 

 Identify genes that are co-regulated (may function in the 
same biochemical pathway) 

 Classify e.g. tumors based on gene expression patterns – 
could lead to genetic markers of clinically useful help 

 

Here, “supervised” methods refer to whether information 
from outside the microarray experiment (e.g. biochemical 
info), and “unsupervised” methods only work with the 
multivariate data collected.  As stated, usually n genes (rows) 
and m conditions; however “if the purpose of the experiment 
is tumor diagnosis, it may be of greater interest to consider m 
rows of conditions (e.g. m rows of tumor samples) measured 
over n genes (i.e. one column for each gene)…If the purpose 
of the experiment is classification of genes, then genes are the 
response variables and the conditions under which their 
expression was measured are the predictor variables.  If the 
main interest is in classifying conditions or grouping similar 
conditions, then the conditions are the response variables and 
the genes are the predictor variables.”  We’ll use clustering 
(genes) and/or data reduction (variables), as appropriate. 
 

11.5.1. Clustering of Microarray Expression Data:  in the 
typical (gene) study correlations and covariances are 
calculated between genes, and we form a correlation matrix 
( ) or covariance matrix ( ); then, the distance matrix is 
 

      
 

(or equivalently, by          ). 
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Computational Example 11.2: mRNA data for 12 yeast genes 
measured at 16 successive time points; we use K-means 
clustering to determine how many different expression 
patterns there are and to group together genes having similar 
patterns: 
 

yeast.dat=read.csv("c:\\CE11p2.csv",sep=",",header=FALSE) 
yeast<-cbind(df[,2:10],df[,12:18]) 
 
# standardize by row (gene) 
syeast.dat<-as.matrix(yeast) 
for(i in 1:12){ 
    syeast.dat[i,]<-(syeast.dat[i,]-mean(syeast.dat[i,]))/ 
    sqrt(var(syeast.dat[i,])) 
} 
row.names(syeast.dat)<-c("YBL023c","YBL072c","YBR202w", 
"YDR258c","YEL032w","YER131w","YGL189C","YGR027C", 
"YLL026w","YLR259C","YPL240C","YLR274W") 
colnames(syeast.dat)<-c("t01","t02","t03","t04","t05","t06", 
"t07","t08","t09","t10","t11","t12","t13","t14","t15","t16") 
syeast.dat[1:4] 
                         t01                    t02                   t03                   t04 
YBL023c   -1.3202812    0.005524189   0.73029779   -0.7722816 
YBL072c   -1.1625721   -0.617924997   0.83474443   -0.8399414 
YBR202w -1.1549769    0.009151956  -0.67907516   -1.0744397 
YDR258c   3.4337065    1.136020908   -0.46415301   -0.3996771 
YEL032w  -0.3421999    1.040063427   -0.27039405   -0.5396661 
YER131w  -1.1608946  -0.868859161    0.45174234    0.8812062 
YGL189C   -0.5141768  -0.994527569    1.25917287    1.5338940 
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YGR027C  -1.8475332   -0.448629053    0.42444587   -0.1956358 
YLL026w   3.3412087     0.659218808   -0.47331522   -0.5791014 
YLR259C   2.6423248     0.553840762     0.47351445   -1.1330117 
YPL240C   3.3712044     1.212655197     0.25669716   -0.2691817 
YLR274W -0.3135798    0.366511474    -0.03127778   -1.1989817 

 
# k=2 now do the K-MEANS 
ckm2<-kmeans(syeast.dat,2,iter.max=10) 
ckm2 
K-means clustering with 2 clusters of sizes 8, 4 
 
Clustering vector: 
YBL023c YBL072c YBR202w YDR258c YEL032w YER131w 
YGL189C YGR027C YLL026w YLR259C YPL240C YLR274W  
      2       1       2       1       2       1       1       1       1       1       1       2  
 
Within cluster sum of squares by cluster: 
[1]  82.02579   10.34386 
 (between_SS / total_SS =  37.0 %) 
 
# k=3 
ckm3<-kmeans(syeast.dat,3,iter.max=10) 
ckm3 
K-means clustering with 3 clusters of sizes 4, 4, 4 
 
Clustering vector: 
YBL023c   YBL072c   YBR202w   YDR258c   YEL032w   YER131w 
YGL189C   YGR027C   YLL026w   YLR259C   YPL240C   YLR274W  
      2       3       2       1       2       3       3       3       1       1       1       2  
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Within cluster sum of squares by cluster: 
[1]   5.776459   10.343858   17.329197 
 (between_SS / total_SS =  77.2 %) 
 
# k=4 
ckm4<-kmeans(syeast.dat,4,iter.max=10) 
ckm4 
K-means clustering with 4 clusters of sizes 2, 4, 2, 4 
 
Clustering vector: 
YBL023c YBL072c YBR202w YDR258c YEL032w YER131w 
YGL189C YGR027C YLL026w YLR259C YPL240C YLR274W  
      2       3       2       4       2       1       1       3       4       4       4       2  
 
Within cluster sum of squares by cluster: 
[1]   2.489429   10.343858    2.385605    5.776459 
 (between_SS / total_SS =  85.7 %) 
 
par(mfrow=c(3,1)) 
plot(syeast.dat[4,],ylim=c(-3.5,3.5),type="l",lty=1, 
xlab="Time Point", ylab="Expression Level") 
points(syeast.dat[9,],type="l",lty=2) 
points(syeast.dat[10,],type="l",lty=2) 
points(syeast.dat[11,],type="l",lty=2) 
title("Cluster 1") 
plot(syeast.dat[1,],ylim=c(-3.5,3.5),type="l",lty=1, 
xlab="Time Point", ylab="Expression Level") 
points(syeast.dat[3,],type="l",lty=2) 
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points(syeast.dat[5,],type="l",lty=2) 
points(syeast.dat[12,],type="l",lty=2) 
title("Cluster 2") 
plot(syeast.dat[2,],ylim=c(-3.5,3.5),type="l",lty=1, 
xlab="Time Point", ylab="Expression Level") 
points(syeast.dat[6,],type="l",lty=2) 
points(syeast.dat[7,],type="l",lty=2) 
points(syeast.dat[8,],type="l",lty=2) 
title("Cluster 3") 
 

 

Cluster 1 Cluster 2 Cluster 3 
 
4: YDR258C 
 

 
1: YBL023c 

 
2: YBL072C 

 
9: YLL026W 
 

 
3: YBR202w 

 
6: YER131W 

 
10: YLR259C 
 

 
5: YEL032w 

 
7: YGL189C 

 
11: YPL240C 
 

 
12: YLR274W 

 
8: YGR027C 

 
11.5.2. Principal Components Analysis: before, we focused on 
rows (genes) – sometimes, we’re interested in the columns 
(variables), and these too can be correlated.  If column 
variables   and   are denoted    and   , then instead of 

working with these correlated variables, a data dimension 
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reduction is better done as follows: we convert the {  } into 
new variables {  } so that each    is a linear combination of 
the    (that is,    ∑       ) so that (1) the {  } are 

uncorrelated and (2)    (  )     (  )     (  ).  This 
is called principal components analysis (PCA) and is equivalent 
to rotating the coordinate axes; a/the major goal of PCA is 
dimension reduction.  Then: “the final step is to perform 
clustering of the genes based upon similarity in their 
expression patterns described by the set of variables   .” 
 
11.5.3. Confirmation of Results: “microarray experiments are 
often used to identify genes that should be examined further 
by extensive genetic, biochemical, or other “wet lab” 
approaches – which in turn are very costly and lengthy! 
 
11.6. Examples of Experimental Applications:  a made-up eg: 
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In the above, rows (letters) correspond to “genes” and 
columns (roman numerals) to “variables”.  In panel A, these 
data have been clustered by rows (using in R dist(,method= 
“euclidean”) and hclust(,method=“average”) and then plclust).  
This defines three clusters of genes (which show similar 
expression patterns): 
 

 
Next, since we’re also interested in patterns among the 
variables, we transpose the above, and apply the same 
technique to the variables – we wish to identify groups of 
“conditions” whose genes show similar expression patterns.  
This results in panel B below. 
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11.6.1. Gene Expression in Human Fibroblasts: from text: 
animal cells growing in tissue culture ordinarily require 
growth factors – here, by adding serum to the growth 
medium.  Here, human fibroblast cells isolated from foreskins 
were cultured in a medium lacking serum, and after 48 hours 
serum was restored – 8600 genes were assessed over time 
(over 24 hours), and genes having like expression patterns 
were clustered to identify the stages of the cell cycle during 
which their expression was elevated or reduced.  Here, cluster 
B represented genes involved in the cell cycle, and cluster C 
consists of genes involved in the immediate-early response.  
(Recall: red is up-regulated, and green is down-regulated.)  
Notice that at first, cluster B genes is down-regulated and 
then up-regulated, and the opposite occurs for cluster C. 
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11.6.2. Gene Expression During Drosphila Development: 
development of Drosphila progresses from embryo (E) 
through larval (L), pupal (P), and adult (A) stages, and 
understanding the genes involved in each stage is paramount.  
Here, 4028 genes were measured over the entire Drosophila 
life cycle.  For the gene clusters: members of the resulting 
clusters of genes were often functionally related.  For 
example, one cluster was enriched for genes active in 
terminally differentiated muscle. 
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Miscellany: Aligning Amino Acid Sequences 
 

 


