Shotgun Sequence Assembly

One example where beginning and ending gaps should be free is in "shotgun sequence assembly". In this problem, we have a large number of partially overlapping subsequences that come from many copies of one original but unknown DNA sequence. The problem is to use comparisons of pairs of these subsequences to deduce the original DNA sequence.

Two subsequences that are from different parts of the original sequence will have a low global alignment score as well as a low end-space free alignment score. Two overlapping subsequences will most likely still have a low global alignment score (since they are unlikely to have the same starting and ending position along the original sequence) but will have a high end-space free alignment score! The overlap will be detected and the subsequences will be pasted together to recover the original sequence using the alignments found.

C	G	G	A	\mathbf{C}	T	A	C	T

\mathbf{A}	\mathbf{A}	\mathbf{T}	\mathbf{C}	\mathbf{C}	\mathbf{G}	\mathbf{A}	\mathbf{G}	\mathbf{C}	T	\mathbf{T}	\mathbf{C}	\mathbf{T}

Ends-Space Free Algorithm

1. Initialization Step. //initialize matrix

$$
\begin{aligned}
& F(0,0)=0 \\
& F(0, j)=0 \quad / / \text { gaps are not penalized } \\
& F(i, 0)=0 \quad / / \text { gaps are not penalized }
\end{aligned}
$$

2. Main Iteration. //fill in table
for each $i=1$ to m
for each $j=1$ to n

$$
\begin{aligned}
& F(i, j)=\max \begin{cases}F(i-1, j-1)+m, \text { if } x_{i}=y_{j} & (\text { CASE } 1) \\
F(i-1, j-1)-s, \text { if } x_{i} \neq y_{j} & (\text { CASE 1) } \\
F(i-1, j)-d & \text { (CASE 2) } \\
F(i, j-1)-d & \text { (CASE 3) }\end{cases} \\
& \operatorname{Ptr}(i, j)=\left\{\begin{array}{l}
\text { diagonal, if (CASE 1) holds } \\
\text { up, if (CASE 2) holds } \\
\text { left, if (CASE 3) holds }
\end{array}\right.
\end{aligned}
$$

3. Termination. //recover optimal score and alignment(s) //return $\max \{F(i, n), F(m, j): 1 \leq i \leq m, 1 \leq j \leq n\}$ as the optimal score S^{*} //use $\operatorname{ptr}(i, j)$ to reconstruct the optimal alignment(s)

Example

