Chapter 1 – Introduction to Statistical Consulting

- Discuss syllabus, course and your background: one of our goals is to take our book knowledge and apply it to real problems communication is therefore essential
- In this course, you'll work in groups of 3 students with a client(s) (in person, by phone and/or via email)
- As statistical consultants, we serve as problem solvers
- Symbiosis between data and theory (see examples on pp.3-4) called the scientific method (SM):

§1.1 History of the Scientific Method

- Our text on p.5 (ignores Eastern philosophy of Confucius etc.) talks about challenges of Galileo, Kepler and Copernicus, and fallacy of the Greek model
- Sir Francis Bacon (1561-1626)

• Rene Descartes (1596-1650)

"There is nothing more futile than to busy oneself with bare numbers and imaginary figures." [Data without context have little meaning.]

The SM lead to many discoveries in the 18th – 19th – 20th centuries including the calculus in math, and the field of probability and statistics

§1.2 The Development of Statistics

 The roots of statistics lie in probability (Pascal and Fermat). Next came the CLT and LLNs (Quetelet), and then regression and correlation (Galton & Pearson); the controversy between Pearson and Fisher is now legendary (see e.g., Agresti's CDA books)

Ronald A. Fisher (1890-1962) Karl Pearson (1857-1936)

- Empirical evidence was used to confirm Boyle's law:
 PV = K (relating air pressure to volume)
- Gosset's (1876-1937) work at Guinness Brewery in Dublin and the Student's t distribution
- Fisher's work at Rothamsted: ANOVA, bioassay, α = 5%
- In industry: QC, Control charts, TQM, QA, Deming
- In health sector: link between smoking and lung cancer was finally admitted by Liggett Group in 1997
- See summary table on p.11

§1.3 An Overview of Statistical Consulting

- "The problem is that most researchers don't have time to acquire this specialized [statistical] knowledge along with the practical experience to apply it appropriately. There is a need to involve someone who understands the scientific process & has the quantitative skills to fulfill this important role: <u>the statistical consultant</u>."_{p.11}
- Book outline is at top of p.12
- Consultants can work on teams or as advisors/consult.
- Required skills include:
 - Scientific (learn quickly; comes with practice)
 - Statistical (course work or short courses)
 - Computational (courses, seminars, on your own)
 - Communication (it's important to practice)
- Need to truly *listen*; challenging to do always and especially over email!

1.4 <u>Statistical Consulting Environments</u>

 Pharmaceutical (statistician tasks on p.16) Nonclinical discovery → Preclinical → Clinical
 Phase I (safety, PK, healthy volunteers)
 Phase II (target patients, MTD: max. tolerated dose)
 Phase III (large clinical study; safety and efficacy)
 Phase IV (post-marketing, AEs)

- Telecommunication as pointed out on p.17, very large databases, different types of jobs in research versus business divisions
- Business
 - Consulting companies (Smith Hanley, PPD, ICF International (Macro), etc.) – stages of work on p.19 for work in market research survey analysis
 - Private consultants tough to 'juggle'
 - Expert witness
- Government Census Bureau, Commerce, World Bank, NCHS, USAID, NIH, CDC, FDA, NIEHS, etc.

http://www.bls.gov/ooh/math/statisticians.htm

- University
 - Need Consulting Center
 - Consulting course