Chapter 4 Class Notes – The Normal Distribution

When the continuous random variable Y has the **Normal distribution** with mean μ and SD σ, we write $Y \sim N(\mu, \sigma)$, and its **density function** for $-\infty < y < \infty$ is given by

$$f(y) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(y-\mu)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$$

In this expression, $Z = \frac{Y-\mu}{\sigma}$ is the **Standardization Formula**

In the above graph, note that the point $Z = -3$ on the horizontal axis corresponds to $Y = \mu - 3\sigma$, ... the point $Z = 3$ corresponds to $Y = \mu + 3\sigma$. Thus, there is a one-to-one relationship between the Z and Y horizontal axes, and we will find it advantageous to switch back and forth between these. The above curve is **symmetric**, and the area under it between points B and D is **about 68%**, between
the points A and E is about 95%, and under the graphed curve (i.e., between -3 and 3) is 99.7%.

The text (pp. 121-123) states that histograms for certain specific variables resemble Normal curves:

- serum cholesterol for children \((\mu = 162, \sigma = 28 \text{ mg/dL})\)
- egg-shell thickness \((\mu = 0.38, \sigma = 0.03 \text{ mm})\)
- inter-spike times in housefly nerve cells \((\mu = 15.6, \sigma = 0.4 \text{ ms})\)
- measurement error in an electronic instrument for counting white blood cells \((\mu = 7000, \sigma = 100 \text{ cells/mm}^3)\)

Beyond this, we’ll find the Normal curve (and associated probabilities) of paramount importance for other reasons (Ch.5).

In the above graph (from p.124), note the roles of \(\mu\) (center) and \(\sigma\) (spread) – in each case the area under the curve is \(1.0 = 100\%\).
To find *Areas under the Normal curve* (i.e., *probabilities*), the first step is to *draw the Normal curve*, the second step is to *standardize* using the above Standardization Formula, and the third step is to *use Table 3* on pp.616-17. We’ll reverse this process when we seek percentiles and p-values. Be sure to also carefully work through the examples on pp. 127-132.

We’ll consider here a new example: *serum cholesterol for 17 year olds* (*Y* in mg/dLi) and suppose that *Y* ~ *N*(176, 30):

a. Randomly select one such 17-year old, **what is the probability that her serum cholesterol is less than 206 mg/dLi?**

Draw the normal curve centered at *μ* = 176, and locate *y* = 206 on the horizontal axis. The associated standardized value is
\[
z = \frac{206 - 176}{30} = 1.00
\]
Then, from Table 3, the area is 0.8413.

The probability is **84.13%**.

b. Randomly select one such 17-year old, **what is the probability that his serum cholesterol exceeds 221 mg/dLi?**

Draw the normal curve centered at *μ* = 176, and locate *y* = 221 on the horizontal axis. The associated standardized value is
\[
z = \frac{221 - 176}{30} = 1.50
\]
Then, from Table 3, the area is 1 - 0.9332 = 0.0668. The probability is **6.68%**.

c. Randomly select one such 17-year old, **what is the probability that her serum cholesterol is between 150 and 170 mg/dLi?**

Draw the normal curve centered at *μ* = 176, and locate *y_1* = 150 and *y_2* = 170 on the horizontal axis. The associated standardized values
are \(z_1 = \frac{150 - 176}{30} = -0.8667 \approx -0.87 \) and \(z_2 = \frac{170 - 176}{30} = -0.20 \). Then, from Table 3, the area is \(0.4207 - 0.1922 = 0.2285 \). The probability is 22.85%.

d. Find the 90th percentile of the serum cholesterol distribution.

Draw the normal curve centered at \(\mu = 176 \), and approximately locate the 90th percentile on the horizontal axis. Locate 0.9000 (approximately) in the center of Table 3, and note \(z \approx 1.28 \). From the Standardization Formula,
\[
y = \mu + z \sigma = 176 + 1.28 \times 30 = 214.4.
\]
Thus, the 90th percentile serum cholesterol value is 214.4 mg/dL. Be sure to plot (at least in one’s mind) the answer on the x-axis to make sure it makes sense.

e. Find the symmetric interval containing 90% of the serum cholesterol values.

Draw the normal curve centered at \(\mu = 176 \), and approximately locate the center 90% interval on the horizontal axis. Locate 0.9500 and 0.0500 (approximately) in the center of Table 3, and note \(z_1 \approx -1.645 \) and \(z_2 \approx 1.645 \). Again, from the Standardization Formula,
\[
y_1 = 176 - 1.645 \times 30 = 126.65 \quad \text{and} \quad y_2 = 176 + 1.645 \times 30 = 225.35.
\]
Thus, the symmetric interval containing 90% of the serum cholesterol values is from 126.65 mg/dL to 225.35 mg/dL. Again, plot the points on the x-axis to make sure the answer makes sense.
For a given sample, Normality can be assessed by:

- checking the histogram to see if it resembles a Normal curve
- calculate \bar{y} and s, the three intervals $\bar{y} \pm s$, $\bar{y} \pm 2s$, $\bar{y} \pm 3s$, count how many of the sample values are in each of these intervals and compare these actual percentages with the theoretical values from the empirical rule: 68.26%, 95.44% and 99.74%
- have the computer calculate the Normal Probability Plot (NPP) and check the NPP plot for linearity. Be sure to read pp.134-138 regarding NPPs.

For a given sample, the NPP is obtained by plotting actual values versus ‘normal scores’ – expected quantile values which assume the (best fitting) Normal distribution – and so a straight line in this plot implies that the data resemble a Normal distribution. Note the relationship between the skews of the original histograms and the NPPs in Figs. 4.4.5-4.4.7 on pp.137-8. Repeated values produce the NPP in Fig. 4.4.8. Transformations (such as log, square root, reciprocal, etc.) can make the resulting histogram and NPP look more Normal; see Figures 4.4.9 and 4.4.10 (for log transform).
Students are asked to work the homework problems for Chapter 4, and check the answer below for the GPA exercise.

\[\text{GPA} = Y \sim N(\mu = 2.50, \sigma = 0.50) \]

(a) \(Y = 2.10 \) gives \(Z = -0.80 \), and \(Y = 2.90 \) gives \(Z = 0.80 \), so the probability is \(0.7881 - 0.2119 = 0.5762 \) or 57.62%.

(b) \(Y = 1.80 \) gives \(Z = -1.40 \), so the probability is 0.0808 (8.08%)

(c) \(Y = 3.40 \) yields \(Z = 1.80 \), so the probability is \(1 - 0.9641 = 0.0359 \) or 3.59%.

(d) The 90\(^{\text{th}}\) percentile means \(z^* = 1.28 \), so \(y^* = 2.50 + 1.28 \times 0.50 = 3.14 \). The GPA of 3.14 is the 90\(^{\text{th}}\) percentile.

(e) 2\% in the RH tail means the 98\(^{\text{th}}\) percentile \(\rightarrow z^* = 2.05 \rightarrow y^* = 2.50 + 2.05 \times 0.50 = 3.525 \). The GPA of 3.525 has only 2\% of the students above it.