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Class Notes for Survival Analysis (revised 3/16) 
 

 See text Section 3.5 and Chapter 7 (pp. 54-62 & 211-252); for 
the quiz on Thursday 3/18, students should be familiar with all 
this material & know how to construct Kaplan Meier estimates. 

 Survival data (i.e., ‘time until’ data) is typically skewed and 
censored.  Censored data means right (most common), left, 
and/or interval.  We’ll focus on right-censored data analysis; the 
text addresses interval- and left-censored data in §7.5. 

 Notation – needed to get at an understanding of the survival and 
hazard functions.  First, we discuss PDF: f(t) and CDF: F(t) (see 
in-class notes).  Next, the survival function: S(t) gives the 
probability of “survival” beyond some time point.  The hazard 
function h(t) gives the hazard of ‘dying’ in the next instance 
given survival up to time t – note that it is therefore ‘conditional’, 
and is not a probability (it can exceed one) – it is instead a rate. 

 The Exponential distribution is considered and illustrated first 
since it is useful in applications (especially reliability and 
engineering); this distribution is generalized via the Weibull 
distribution.  But these parametric approaches are criticized (see 
p.216 section 7.2.2) as being too demanding in requirements/ 
assumptions, and these points lead us to seek out nonparametric 
or semi-parametric methods (no distributional assumptions). 

 Leukemia example on p.55 illustrates Kaplan-Meier method (to 
estimate the two survival curves; but note correct on HO#1 p.2) 
and the log-rank test to test for coincidence of the two curves. 

 Another example: Collett (2003:7) presents data related to the 
prognosis for women with breast cancer. Here, the response 
variable is survival time (months) of women with tumors that 
were negatively or positively stained with a snail lectin (marker).   
 

data one; 
  input st time status @@; pt=_n_; posstain=st-1; 
  stain='POS'; if st=1 then stain='NEG'; datalines; 
1  23 1 1  47 1 1  69 1 1  70 0 1  71 0 1 100 0 1 101 0 1 148 1 
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1 181 1 1 198 0 1 208 0 1 212 0 1 224 0 2   5 1 2   8 1 2  10 1
2  13 1 2  18 1 2  24 1 2  26 1 2  26 1 2  31 1 2  35 1 2  40 1 
2  41 1 2  48 1 2  50 1 2  59 1 2  61 1 2  68 1 2  71 1 2  76 0 
2 105 0 2 107 0 2 109 0 2 113 1 2 116 0 2 118 1 2 143 1 2 154 0 
2 162 0 2 188 0 2 212 0 2 217 0 2 225 0 
; 
proc lifetest plots=(s,lls); 
  time time*status(0); 
  strata stain; 
run; 
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   Parallelism above indicates CPH model may fit these data (p.239). 
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A.  LIFETEST Output
 
                Stratum 1: stain = NEG 
      Summary Statistics for Time Variable time 
 
                  Quartile Estimates 

                Point     95% Confidence Interval 
     Percent    Estimate      [Lower      Upper) 
        75        .        181.000        . 
        50        .        148.000        . 
        25     148.000      47.000        . 

 
B.  LIFETEST Output

 

                Stratum 2: stain = POS 
      Summary Statistics for Time Variable time 
 
                  Quartile Estimates 
                Point     95% Confidence Interval 
     Percent    Estimate      [Lower      Upper) 
        75        .        113.000        . 
        50      64.500      40.000     143.000 
        25      28.500      18.000      50.000 

 
C.  LIFETEST Output

 

Testing Homogeneity of Survival Curves for time over Strata 
              Test of Equality over Strata 
                                         Pr > 
         Test      Chi-Square      DF    Chi-Square 
         Log-Rank      3.5150       1      0.0608 
         Wilcoxon      4.1800       1      0.0409 
         -2Log(LR)     4.3563       1      0.0369 

 
 Cox’s Proportional Hazards (CPH) model is a semi-parametric 

method/model used to relate hazard functions which vary with x 
to a baseline hazard (h0) – the covariate vector (x) enters as in 
Equations (7.5) and (7.6) on p.216 in the text; these are 
equivalent manners to write the CPH model.  When there are two 
treatments (such as drugs A and B), x is just a dummy variable.  
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Note that there is no intercept in this model (it is absorbed into 
the h0 term).  The CPH model is fit to the leukemia data in the 
Addendum (attached at the end of HO#1) – note the 
interpretation of the hazard ratio!  The proportionality 
assumption/ requirement is ‘confirmed’ by looking at the above 
LLS plot for parallelism (see p.239).  See additional examples of 
the CPH model fit in the text in §7.2 noting especially the 
interpretations of the hazard ratios.  When the CPH model is fit to 
Collett’s breast cancer data, we get the following:  
 

proc phreg; 
  model time*status(0)=posstain; 
run; 

 

PHREG Partial Output 
 
                        Model Information 
         Summary of the Number of Event and Censored Values 
                                                Percent 
              Total       Event    Censored    Censored 
                 45          26          19       42.22 
 
                        Model Fit Statistics 

          Without           With 
               Criterion      Covariates     Covariates 
                -2 LOG L         173.968        170.096 
                AIC              173.968        172.096 
                SBC              173.968        173.354 
 
               Testing Global Null Hypothesis: BETA=0 
      Test                 Chi-Square       DF     Pr > ChiSq 
      Likelihood Ratio         3.8717        1         0.0491 
      Score                    3.5081        1         0.0611 
      Wald                     3.2858        1         0.0699 
 
            Analysis of Maximum Likelihood Estimates 
                Parameter    Standard                             Hazard 
Variable   DF    Estimate       Error   Chi-Square   Pr > ChiSq    Ratio 
posstain    1     0.90801     0.50092       3.2858       0.0699    2.479 

 

 Another model for survival data is the Accelerated Failure Time 
(AFT) model (not discussed in our text); it too brings 
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covariate(s) into the model.  It appears that the CPH model is in 
widespread use in medicine and the AFT model in 
engineering/reliability applications, although there is evidence 
this is changing (see the DIJ article emailed to you). 

 Some common SAS procedures for Survival Analysis are: 
(1) SAS LIFETEST procedure provides nonparametric 

(Kaplan Meier) estimates of quartiles and medians for the 
two groups, and tests of this question (null = no difference 
between the two curves).  Often we use the log-rank test. 

(2) SAS PHREG procedure fits the CPH model; this model is 
the theme of Chapter 7 in the text. 

(3) SAS LIFEREG (with Weibull distribution) fits the 
parametric Cox PH model. 

(4) SAS’ LIFEREG (with Log-logistic distribution) fits the 
parametric AFT model. 

 For the above breast cancer example with two ‘treatments’ 
(Stain = NEG or POS), whereas the fitted CPH model gives 

  479.2
)(ˆ)(ˆ tStS NEGPOS  , the fitted AFT model with log-logistic 

distribution gives )16.3(ˆ)(ˆ tStS NEGPOS  .  This follows since the 
AFT model holds that SPOS(t) = SNEG(t / e

) or equivalently that 
hPOS(t) = e hNEG(t / e

).  The relevant output is the following: 
 

proc lifereg; 
  model time*status(0)=posstain/d=llogistic; 
run; 

 

LIFEREG Partial Output 
                            Model Information 
          Name of Distribution           LLogistic 
          Log Likelihood              -59.24726035 
 
                        Analysis of Parameter Estimates 
                              Standard   95% Confidence     Chi- 
    Parameter     DF Estimate    Error       Limits       Square Pr > ChiSq 
    Intercept      1   5.4611   0.4604   4.5588   6.3634  140.72     <.0001 
    posstain       1  -1.1491   0.5202  -2.1687  -0.1294    4.88     0.0272 
    Scale          1   0.8047   0.1330   0.5821   1.1125 
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 Today’s handout (HO#3) emphasizes the interpretations of 
hazard ratios in the face of interaction. 

 In HO#2, we examine the Maryland recidivism data.  The 
logistic analysis at the end is less powerful than the survival 
analysis since the logistic analysis only measure whether or not 
the releasee was subsequently re-arrested, whereas the survival 
analysis measured this (censored or not) plus time until re-arrest.  
The interpretation associated with the logistic analysis would 
involve “odds of re-arrest” whereas that associated with the 
survival analysis involves “hazard of re-arrest” or “survival” 
(probability of no re-arrest up to a point in time).  In terms of the 
survival analysis, interestingly, both the AFT (log-logistic) and 
the CPH models produce similar results, and both indicate that 
the ‘fin*age’ interaction may be significant; this will complicate 
interpretation.  It would be wise to write out one’s interpretation 
for the CPH model.  Also, note that the interpretation for the AFT 
model involves ‘expected time to re-arrest’ whereas that for the 
CPH model involves ‘hazard of re-arrest’. 

 In fact, the above recidivism data is actually a little more 
complicated as employment status is actually measure each week 
for each releasee; this means that ‘employment status’ is a ‘time 
dependent covariate’, and this is discussed in §7.3.1 in the text.  
Handling TDC’s in STATA is challenging but in SAS/PHREG it 
is not (p.234). 

 One way around non-proportionality is to stratify (see p.235), 
although this is more so for ‘blocking variables’.   


