Chapter 2 Class Notes

- Probability can be thought of in many ways, for example as a *relative frequency* of a long series of trials (e.g. flips of a coin or die)
- Another approach is to let an expert (such as an MD) set his/her *subjective probability*, but neither this nor the former are very practical, so we’ll use the *mathematical* or *axiomatic approach* given below
- The theoretical relative frequency (i.e., the assumed probability distribution) for the number of dots showing in a single toss of a fair die are on p.22; whether a given die is deemed to be “fair” or “unfair” depends upon the degree to which the actual the theoretical match up; e.g., if we tossed the die 10 times and got all 6’s, we’d think something is wrong
- Sometimes results fall in a “grey area” and we need a probability structure to help us decide what is truly “unlikely”; for example, the probability that *at least two students in this room have the same birthday* is 62.7%. Using R software, we get:

```
> 1-(365*364*363*362*361*360*359*358*357*356*355*354*353*352*351*350*349*348*347*346*345*344*343*342*341*340*339)/(365^27)
[1] 0.6268593
```
- If time, can do p.26 #2.4 and 2.5 in class
Section 2.3

• In §2.3, note we’ll use set notation such as \(A \) for the set of elements \(\{a_1, a_2, \ldots\} \); the \(a_k \) are the elements of \(A \).

So, for a single toss of a die, \(A = \{1,2,3,4,5,6\} \), whereas for a single draw from a fair deck of cards, \(B = \{2,3,4,5,6,7,8,9,10,J,Q,K,A\} \) of each of \(\spadesuit, \clubsuit, \heartsuit, \diamondsuit \} \).

• **Inclusion**: \(A \subseteq B \) if all elements from \(A \) are in \(B \); see Figure 2.2 on p.23.

• **Union**: \(A \cup B \) is the set of all elements in \(A \) (alone) or \(B \) (alone) or both; see Figure 2.3 on p.23: key word **OR**.

• **Intersection**: \(A \cap B \) (or \(AB \)) is the set of all elements in both \(A \) and \(B \); see Figure 2.4 on p.24: key word **AND**.

• **Complement**: \(\overline{A} \) (or \(A^c \)) is every element in the sample space \((S) \) not in \(A \): key word **NOT**.

• **Mutually Exclusive**: \(A \) and \(B \) are M.E. if no elements are in both \(A \) and \(B \): \(A \cap B = \emptyset \) (\(\emptyset \) is the empty set).

• **DeMorgan’s Laws**: \(A \cap B = \overline{A} \cup \overline{B} \) and \(A \cup B = \overline{A} \cap \overline{B} \).

Section 2.4

• **Some Definitions**:
 - an **experiment** is the process by which an observation is made.
 - the outcome of an experiment is called an **event** (these are either simple or compound).
 - a **simple event** is an event that cannot be
decomposed since it has only one sample point; **compound events** can be decomposed
- the **sample space** \((S)\) associated with an experiment is the set of all possible sample points
- a **discrete sample space** is one that contains either a finite or a countable number of sample points
- an **event** in a discrete sample space \(S\) is a collection of sample points, i.e., **any subset of \(S\)**

- Two examples are on p.29
- **Key definition** (p.30): Let \(S\) be the sample space associated with an experiment. To every \(A\) (subset) of \(S\), we assign a number, \(P(A)\), called the **probability** of \(A\), such that these axioms hold:
 - Axiom 1: \(P(A) \geq 0\)
 - Axiom 2: \(P(S) = 1\)
 - Axiom 3: if \(A_1, A_2, A_3, \ldots\) are mutually exclusive events in \(S\), then \(P(A_1 \cup A_2 \cup \ldots) = \sum_{k=1}^{\infty} P(A_k)\)

- Notice that these axioms are more conditions on the probability \(P(\bullet)\) operator – they don’t tell us how to assign probabilities, but only the conditions it must satisfy to be a valid probability function

Section 2.5
- Two methods to find probabilities in finite/countably infinite (denumerable) cases: sample-point and event-composition, and we discuss the sample-point now
• **Sample-point method steps** (see p.36):
 - Define the experiment and clearly determine how to describe on simple event
 - List the simple events (and make sure simple): this defines S [Note: sometimes this is tough.]
 - Assign ‘reasonable’ probabilities making sure these are non-negative and sum to 1
 - Define event of interest A as a specific collection of simple events – make sure you have them all
 - Find P(A) by summing the respective probabilities
• Clearly work through examples 2.2 (p.36), 2.3 (p.37) and 2.4 (p.38), and if time, p.40 #2.31

Section 2.6
• Permutations and combinations permit us to count sample points more quickly and accurately
• **Theorem 2.1** states that given m elements a₁, a₂, ... aₘ and n elements b₁, b₂, ... bₙ, then the total number of pairs is mn; this result extends to three or more factors
• **Examples** are: tossing a die twice (36 sample points) or k times (6ᵏ sample points); tossing a coin 3 times (2³ = 8 sample points); calculating birthday probabilities in Ex. 2.7: room of 20 people with 365 distinct birth ‘scores’, so each sample point is a 20-tuple of 1 to 365, all birthdays are different in nₐ = 365*364*...*346 ways, so probability is nₐ / 365²⁰ = 0.5886
• With help from R:

```r
permm=function(n,r) factorial(r)*choose(n,r)
> permm(365,20)/(365^20)
[1] 0.5885616
```

• Notice for the last example, it would be virtually impossible to *list* all the elements in S, so we clearly need this “mn rule”

• An *ordered* arrangement of r distinct objects is called a *permutation*, and the number of ways of ordering n distinct objects taken r at a time is denoted \(P_r^n \)

• **Theorem 2.2** (p.43) states that \(P_r^n = \frac{n!}{(n-r)!} \)

• Example 2.8: in an office of 30 employees, 3 are chosen – without replacement – and the first wins $100, 2^{nd}$ wins $50, and 3^{rd} wins $25; there are then \(P_{3}^{30} = 30 \times 29 \times 28 = 24360 \) sample points in S

• It can also be the case that \(r = n \) as in Ex.2.9 p.44 (machine parts in assembly), and note that \(P_n^n = n! \)

• **Theorem 2.3**: the number of ways of partitioning n distinct objects into k distinct groups containing \(n_1, n_2, \ldots, n_k \) objects respectively (such that \(n_1 + n_2 + \ldots + n_k = n \) and so each object appears in exactly one group) is

\[
N = \binom{n}{n_1 \ n_2 \ \ldots \ n_k} = \frac{n!}{n_1! \ n_2! \ \ldots \ n_k!}
\]
It’s instructive to understand why, in this formula, the $n!$ is divided by the $n_1! \ n_2! \ldots n_k!$ – see the proof on p.44

Note the technique used in Ex.2.10 on p.45: the 20 laborers are divided into jobs of 6, 4, 5 and 5 laborers in jobs I, II, III and IV respectively, and I is the very undesired of these jobs. So the number of sample points in total is $N = \binom{20}{6 \ 4 \ 5 \ 5} = \frac{20!}{6!4!5!5!}$. As it turns out, all 4 people of a certain group were placed into job I; if we assume that this placement was at random, then the probability of this event A occurring is these number of sample points (n_a) times $1/N$. Also, since $n_a = \binom{16}{2 \ 4 \ 5 \ 5} = \frac{16!}{2!4!5!5!}$, then $P(A) = n_a/N = 0.0031$

Since this is indeed very small, we can guess (or hypothesize) that perhaps the assignment of these four individuals was not done at random

Some help from R:

```r
>N=factorial(20)/(factorial(6)*factorial(4)*factorial(5)*factorial(5))
>na=factorial(16)/(factorial(2)*factorial(4)*factorial(5)*factorial(5))
> na/N
[1] 0.003095975
```

In the case of permutations, order matters, but in some cases, such as playing cards, \{AK\} and \{KA\} are
really just one Ace and one King - that is, order doesn’t matter. This brings us to combinations instead of permutations

- The number of combinations of n objects taken r at a time, denoted C_r^n or $\binom{n}{r}$, is the number of subsets, each of size r, that can be formed from the n objects.

- **Theorem 2.4** points out that $\binom{n}{r} = C_r^n = \frac{p_r^n}{r!} = \frac{n!}{r!(n-r)!}$

- Aside: Just as the term $\binom{n}{n_1\ n_2\ ...\ n_k}$ is the coefficient of $y_1^{n_1}y_2^{n_2}\ ...\ y_k^{n_k}$ in the expansion of $(y_1 + y_2 + \cdots + y_k)^n$, so too the term $\binom{n}{r} = \binom{n}{r\ n - r}$ is the coefficient of $x^r y^{n-r}$ in the expansion of $(x + y)^n$ – the former of these is called a multinomial coefficient and the latter is called a binomial coefficient.

- **Example 2.11** – the number of ways of choosing 2 individuals from a group of 5 is $\binom{5}{2} = 10$ just as on p.36

- **Example 2.12** – five people are rank in terms of test scores as I, II, III, IV, V; we choose two of these at random, and let A be the event that we choose exactly one of I or II. The number of elements in A is $\binom{2}{1} \times \binom{3}{1} = 2 \times 3 = 6$ since we want exactly 1 of the 2 in {I,II} and exactly 1 of the 3 in {III,IV,V} – gotten by multiplying
the results by the above ‘mn rule’. By the last example, it follows that $P(A) = \frac{6}{10} = 0.60$

- **Example 2.13** – a company orders supplies from M distributors and places n orders (with $n < M$). With no restrictions on the orders, let’s find the probability that distributor 1 gets exactly k orders (with $k \leq n$): since each of the M distributors could get up to n orders, the number of different ways the orders could be assigned is M^n. The number of ways the n orders can result in k orders to distributor 1 is $\binom{n}{k}$, and there remains $(n-k)$ orders of the remaining $(M-1)$ vendors, resulting in $(M-1)^{n-k}$ ways, so the number of successful outcomes is $\binom{n}{k} \times (M-1)^{n-k}$. Putting this together, the desired probability is $\frac{\binom{n}{k} \times (M-1)^{n-k}}{M^n}$

- Some help from R:

```r
> ex2p13=function(M,n,k) {
+   top=choose(n,k)*(M-1)^(n-k)
+   bot=M^n
+   top/bot
+ }
> ex2p13(6,4,0)
[1] 0.4822531
> ex2p13(6,4,1)
[1] 0.3858025
> ex2p13(6,4,2)
```
Section 2.7

- Illustration: In a single role of a fair die, the probability of a “1”, 1/6, is an *unconditional probability*. Had we been given some prior knowledge such as that the toss was an odd number, then we would have then calculated the *conditional probability* of 1/3.
- To make the previous example more formal, let $A = \{1\}$ and $B = \{\text{die is odd}\} = \{1,3,5\}$, then the conditional probability of A given that B has occurred, denoted $P\{A|B\}$, is equal to $\frac{P(A \cap B)}{P(B)}$ provided that $P\{B\} \neq 0$.
- In the die example, it turns out that $A \cap B = A = \{1\}$ – this is usually not the case – so we get (as above):
 \[
 P(A|B) = \frac{1/6}{1/2} = \frac{1}{3}
 \]
- Events A and B are called *independent* if any of these [equivalent] conditions is met:
 - $P(A|B) = P(A)$
 - $P(B|A) = P(B)$
 - $P(A \cap B) = P(A) \times P(B)$
• Events that are not independent are *dependent*
• To illustrate using p.55 ex.2.73, \(P(\text{at least one } R) = \frac{3}{4} \), \(P(\text{at least one } r) = \frac{3}{4} \), \(P(\text{one } r \mid \text{Red flowers}) = \frac{2}{3} \); since \(P(\text{one } r) = \frac{1}{2} \neq \frac{2}{3} \), we conclude recessive allele and flower color are *dependent* (no surprise there)

Section 2.8

• **Multiplication Law of Probability** – for any two events A and B:
 \[
P(A \cap B) = P(A) \times P(B \mid A) = P(B) \times P(A \mid B)
 \]

 • Above extends to:
 \[
P(A_1 \cap A_2 \cap ... \cap A_k)
 = P(A_1) \times P(A_2 \mid A_1) \times P(A_3 \mid A_1 \cap A_2) \times ...
 \times P(A_k \mid A_1 \cap A_2 \cap ... \cap A_{k-1})
 \]

 • Events A and B are independent IFF
 \[
P(A \cap B) = P(A) \times P(B)
 \]

 • The **Addition Law of Probability** states that for two events A and B,
 \[
P(A \cup B) = P(A) + P(B) - P(A \cap B)
 \]

 • Above extends:
 \[
P(A \cup B \cup C)
 = P(A) + P(B) + P(C) - P(A \cap B)
 - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)
 \]

 • Further, for mutually exclusive events, \(P(\bigcup_{j=1}^{k} A_j) = \sum_{j=1}^{k} P(A_j) \) - e.g., \(P(A \cup B) = P(A) + P(B) \)
• For any event A, \(P(\overline{A}) = 1 - P(A) \)

• **Example**: p.60 ex.2.93 – wins with HHH or HHM or MHH, (which are obviously mutually exclusive) so add the probabilities:
\[
(0.70)(0.40)(0.70) + (0.70)(0.40)(0.30) + (0.30)(0.40)(0.70) = 0.364
\]

• **Another Example**: p.61 ex.2.99

Section 2.9

• **Event-composition method**: decomposes an event into unions and/or intersections of other events; the steps, given on p.64, are: (1) define experiment, (2) visualize the sample points, (3) express the event A as union and/or intersection composition, (4) apply the additive and/or multiplication rules to get the answer

• Seven examples are given in the section – some are:

• **Ex. 2.19 (p.64)**: A, the event that exactly one of the two best applicants is chosen, is decomposed into \(B \cup C \) with B representing the best and one of the 3 poorest and C being the second best and one of the 3 poorest. Note that these two events are mutually exclusive, so \(P(A) = P(B \cup C) = P(B) + P(C) \). We next argue that \(P(B) = 2 \times \frac{1}{5} \times \frac{3}{4} = 3/10 \) since we want both the best applicant chosen on the first draw (\(B_1 \)) and one of the 3 poorest applicants chosen on the second draw (\(B_2 \)) or vice versa; ‘vice versa’ here means getting
one of the 3 poorest on the first draw (B3) and the best on the second draw (B4). Note that $P(B_1 \cap B_2)) = P(B_1) \times P(B_2|B_1) = \frac{1}{5} \times \frac{3}{4} = \frac{3}{20}$ and $P(B_3 \cap B_4)) = P(B_3) \times P(B_4|B_3) = \frac{1}{5} \times \frac{3}{4} = \frac{3}{20}$. A very similar argument shows $P(C) = \frac{3}{10}$, so $P(A) = \frac{3}{5}$.

- **Ex. 2.20 (p.65)**: Let R be the event that a patient with the disease responds. In the 3 patients, the probability that at least one responds is $1 – \text{probability that none responds} = 1 – P(\overline{R}_1 \cap \overline{R}_2 \cap \overline{R}_3) = \text{(by independence)} 1 – [P(\overline{R})]^3 = 1 – (0.10)^3 = 0.999$

- **Ex. 2.22 (p.67)**: A_1 is the event that the color matches on the red box; A_2 and A_3 correspond to the black and white boxes. There are $3! = 6$ ways to arrange the 3 balls; two of these match, so $P(A_1) = P(A_2) = P(A_3) = \frac{2}{6} = \frac{1}{3}$. All pairwise intersections and $A_1 \cap A_2 \cap A_3$ are equivalent to *all 3 balls matching*, so $P(A_1 \cap A_2) = P(A_1 \cap A_3) = P(A_2 \cap A_3) = P(A_1 \cap A_2 \cap A_3) = \frac{1}{6}$, so the probability of *at least one match* is $P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3) – P(A_1 \cap A_2) – P(A_1 \cap A_3) – P(A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_3) = 1 – 3(\frac{1}{6}) + \frac{1}{6} = \frac{5}{6}$. (a) It follow the probability of *no matches* is $1 - \frac{5}{6} = \frac{1}{6}$. (b) Notice that exactly one match is $\{\text{at least one match}\} – \{\text{at least two matches}\}$, and by the above $\{\text{at least two matches}\} = \{\text{all three match}\}$, so the probability here is $\frac{5}{6} - \frac{1}{6} = \frac{2}{3}$.

• **Ex. 2.21 (p.66)** IFF enough time (geometric).

Section 2.10

• **Law of Total Probability**: Let the sets $B_1, B_2 \ldots B_k$ be such that they are pairwise mutually exclusive (each $B_i \cap B_j = \emptyset$) and $S = B_1 \cup B_2 \cup \ldots \cup B_k$, then $\{B_1, B_2 \ldots B_k\}$ is called a **partition** of S.

• For any subset A of S and partition $\{B_1, B_2 \ldots B_k\}$, A can be **decomposed** as

\[
A = (A \cap B_1) \cup (A \cap B_2) \cup \ldots (A \cap B_k)
\]

• Let $\{B_1, B_2 \ldots B_k\}$ be a partition of S such that for all $i = 1, 2 \ldots k$, $P(B_i) > 0$, then for any event A

\[
P(A) = \sum_{i=1}^{k} P(A|B_i)P(B_i)
\]

• See the diagram of this result in Figure 2.12, p.71

• **Bayes’ Rule**: Let $\{B_1, B_2 \ldots B_k\}$ be a partition of S such that for all $i = 1, 2 \ldots k$, $P(B_i) > 0$ and A is any event, then

\[
P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum_{i=1}^{k} P(A|B_i)P(B_i)}
\]

• **Ex. 2.23 (p.71)**: B is the event that a fuse came from line 1 (so \overline{B} from lines 2 – 5), and A is the event that a fuse is defective. Then $P(B) = 0.20$, $P(A|B) = 3(0.05)(0.95)^2 = 0.135375$ and $P(A|\overline{B}) = 3(0.02)(0.98)^2 = 0.057624$. Since $\{B, \overline{B}\}$ is a partition of S,

\[
P(A) = P(A|B)P(B) + P(A|\bar{B})P(\bar{B})
= (0.135375)(0.2) + (0.057624)(0.8) = 0.0731742,
\]
and therefore by Bayes’ Rule,
\[
P(B|A) = \frac{P(A|B)P(B)}{P(A)} = \frac{(0.135375)(0.2)}{0.0731742} = 0.37
\]
Also, \(P(\bar{B}|A) = 1 - 0.37 = 0.63. \)

Section 2.11 Numerical Events and Random Variables

- **A Random Variable** is a real-valued function for which the domain is a sample space (S)

- **Example 2.24** (p.76): Tossing a coin twice and letting \(Y \) be the number of HEADS (H), then
 - \(\{Y = 0\} \) corresponds to \(\{TT\} = E_4 \)
 - \(\{Y = 1\} \) corresponds to \(\{HT,TH\} = E_2 \cup E_3 \)
 - \(\{Y = 2\} \) corresponds to \(\{HH\} = E_1 \)

- **Example 2.25** (p.77): In the last example, it follows that
 - \(P(0) = P(Y = 0) = \frac{1}{4} \)
 - \(P(1) = P(Y = 1) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \)
 - \(P(2) = P(Y = 2) = \frac{1}{4} \)

- Another example is the monkey example, Ex.2.22 on p.67 – here, \(Y \) is the number of matches of ball and box color, and the values of \(Y \) and probabilities are
 - \(P(0) = P(Y = 0) = \frac{1}{3} \)
 - \(P(1) = P(Y = 1) = \frac{1}{2} \)
- \(P(2) = P(Y = 2) = 0 \)
- \(P(3) = P(Y = 3) = \frac{1}{6} \)

- As we’ll see in the next chapter, sometimes the assignment of probabilities to a random variable may be by a real-valued function. One such example is given in Ex.2.21 (p.66), where for \(r = 1, 2, \ldots \)

\[
P(Y = r) = \left(\frac{5}{6} \right)^{r-1} \left(\frac{1}{6} \right)
\]

Section 2.12 Random Sampling

- In Statistics, we draw a sample from a population, and use what we observe in the sample to make inferences regarding the population
- From a population of \(N = 5 \) elements, a sample of \(n = 2 \) is taken; if sampling is done without replacement, then each pair has a \(1/10 = 0.10 \) chance of being selected, whereas if sampling is done with replacement, then each pair has a \(2/25 = 0.08 \) chance of being selected
- The specific selection method of the sample is called the design of (the) experiment
- For \(N \) and \(n \) representing the population and sample size resp., if the sampling is conducted in such a way that each of the \(\binom{N}{n} \) samples is equally likely, then the sampling is called simple random sampling (SRS)
• SRS is tough to achieve in practice – although a table of random digits can help (see discussion on pp.78-9) – and we are often lead to use other types of sampling methods such as cluster sampling, stratified sampling, hierarchical sampling, etc. Best to learn more about these by taking a Sampling course.

Additional Examples

• p.81, ex.2.151

```
world.series.4.games = function(p) p^4+(1-p)^4
world.series.5.games =
    function(p) 4* ( (p^4)*(1-p) + ((1-p)^4)*(p) )
world.series.6.games =
    function(p) 10* ( (p^4)*((1-p)^2) + ((1-p)^4)*(p^2) )
world.series.7.games =
    function(p) 20* ( (p^4)*((1-p)^3) + ((1-p)^4)*(p^3) )
world.series.4.games(0.5)
0.125
world.series.5.games(0.5)
0.25
world.series.6.games(0.5)
0.3125
world.series.7.games(0.5)
[0.3125]
```

• p.80, ex.2.146

• p.81, ex.2.153