Chapter 3 Class Notes

Sections 3.1 and 3.2

e Recall, a random variable (RV) is a real-valued function
defined over a sample space, S. A random variableY is
said to be discrete if it can take on only a finite or
countably infinite number of distinct values.

e Uppercase Y is a random variable, and lowercase y is a
particular value that the random variable may assume:
Y is random, y is not. (Y =y) is to be understood as the
set of points in S assigned to the value y by the RV Y.

e Def. 3.2. The probability that Y takes on the valuey,
P(Y =y), is defined as the sum of the probabilities of all
sample points in S that are assigned to the value y.
Often (usually), we write P(Y =y) as p(y).

e Def. 3.3 (p.88). The probability distribution for a
discrete RV Y can be represented by a formula, a table,
or a graph that provides p(y) = P(Y = y) for all y.

e Example 3.1 (p.88). From A ={M,, M,, M3, W, W,,

6\ _
2) =15 sample

points in S; Y is the number of women selected. Here

®

W3}, we choose just two. There are (

the probability distribution formula is p(y) =
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fory=0, 1, 2. For example, p(0) = 3/15 since there are
3 sample points in S that map to Y =0, viz, M;M,,
M;M;, M,M;. The table and histogram are on p.89.
e Theorem 3.1 (p.89): for any discrete RV, we have:
- 0<pl) <1forally
- 2y P(¥) = 1, where the sum here is over all values
of y with nonzero probability
e p.90, ex.3.7: Y = # of empty bowls
S= { aaa, aab, aac, aba, abb, abc, aca, acb, acc,
baa, bab, bac, bba, bbb, bbc, bca, bcb, bcc,
caa, cab, cac, cba, cbb, cbc, cca, ccb, ccc }
From the listing of S, we see p(0) = 6/27 = 2/9, p(1) =
18/27 = 6/9 = 2/3, and p(2) = 3/27 = 1/9; table is:

y | Ply) | yxPly) | y*xP(y)

0o | 2/9 0 0

1 6/9 6/9 6/9

2 1/9 2/9 4/9
Total | 9/9=1| 8/9 10/9

Section 3.3
e Def. 3.4 (p.91): Y is a discrete RV with probability
function p(y), then the expected value of Y, E(Y) is
defined to be E(Y) = ), yP(y)(taken over all y with

non-zero probability) — provided the sum is absolutely
convergent, i.e., that ., |y|P(y) < =
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e Theorem 3.2 (p.93): Y is a discrete RV with probability
function p(y) and g(Y) is a real-valued function of Y,
then the expected value of g(Y) is:

E[g(Y)] = Eyg(y)p(y)

e Def. 3.5 (p.93). Yis a RV with mean E(Y) =, then the
variance of Y is

o’ = E[(Y — p)?]
The standard deviation (o) is the positive square root
of 6°. The units of pu and & are the same as for y.

e Example 3.2. The table and histogram are given on
p.94. We get n = (0)(1/8) + (1)(2/8) + (2)(3/8) + (3)(2/8)
=14/8 =7/4=1.75. Also, 6 = (0 - 1.75)*(1/8) + (1 -
1.75)*(2/8) + (2 - 1.75)*(3/8) + (3 - 1.75)*(2/8) = 7.5/8 =
0.9375,and so 0 = V0.9375 = 0.9682. Then,ptc
is (0.7818,2.7182), which contains 5/8 = 0.625 of the
probability mass, close to the empirical rule (68%)

e Theorems 3.3 — 3.5 (p.95) can be combined to say that
for Y a discrete RV with probability function p(y) and
a,b,c are constants, then E(e) is a linear operator:

Elaf(Y) + bg(Y) + c] = aE[f(Y)] + bE[g(Y)] + ¢

e Theorem 3.6 (p.96). Let Y be a RV with probability

function p(y) and mean E(Y) = u, then
g2 = E[YZ] — 12
(sometimes called the short-cut formula for c°)
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e Example 3.2 continued. E(Y?) = (0%)(1/8) + (1°)(2/8) +
(2°)(3/8) + (3%)(2/8) =32/8 = 4, so 6> =4 —1.75* = 15/16

e p.90, ex.3.7 continued. p = E(Y) = 8/9, E(Y’) = 10/9 so
c°=10/9 - (8/9)° = 26/81 = 0.3210 = 0.5666°

e p.99, ex.3.23 — the table and calculations are as follows

y P(y) y x P(y) y* x P(y)
-4 9/13 -36/13 144/13
5 2/13 10/13 50/13
15 | 2/13 30/13 450/13
n=4/13 | E(Y’)=644/13

Here, o’ = 644/13 — (4/13)° = 8356/169 = 7.0316°. So,
each time you play, you expect to win $4/13 = 0.3077 =
about 31¢ give or take about $7.

Section 3.4
e Def. 3.6 (p.101). A binomial experiment has all of the
following properties:
1.The experiment consists of a fixed number n of trials
2.Each trial results in either a “success” S or “failure” F
3.The success probability p stays the same for all trials
4.The trials are independent
5.Y, the random variable, is the number of successes
observed in the n trials
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e Notice that just one violation above makes the RV not
binomial: 3 draws without replacement from a hat
containing 5 red chips and 10 green ones and counting
the number of reds is not binomial. If sampling is done
with replacement, then the RV would be binomial with
n =3 and p = %; if we called a green chip a “success”,
this would be binomial with n =3 and p = %. Also,
note that sampling until you get the 5% red chip is not
binomial since n is not set a priori.

e Def. 3.7 (p.103). The binomial RV Y based on n trials
and with success probability p has the binomial

probability distribution formula:
n

r(y) = (y) pPPA-p)"7,y=01.n0<p<1
e Plots of the prob. histograms are given on p.104 of
Bin(n=10,p=0.1), Bin(n=10,p=)%2) and Bin(n=20,p=%)
e Letting q =1 — p, notice that we get these probabilities
from the binomial expansion:

1=1"=(q+p)" = (g) pq" + ('11) p'q" !

)Pttt (D) et + () pa?
=P0)+P1)+--+Pn—1)+ P(n)
e p. 105, ex. 3.7. In a lot of 5000 electrical fuses, 5% are
bad, we take a sample of 5 fuses, and the probability
of observing at least one defective is approximately
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1-p(0)=1- ((5)) (0.05)°(0.95) = 0.2262

e The above solution is only approximate since one
binomial condition is not truly met (that p stays the
same across the “draws” since sampling is without
replacement), but the approximation is very close

e The above calculations in R:

1-pbinom(0,5,0.05)
0.2262191

e Had we taken a sample of n = 20 fuses above and

wanted the probability of at least 4 defective:
1-pbinom(3,20,0.05)
0.01590153

e p. 105, ex. 3.8. p =0.30 (recovery rate) and n =10
(sample taken) if we see y = 9 recoveries, we could
calculate: P(9) + P(10) = 0.000144 — that the probability
of what we saw or more extreme is very small, this
makes us doubt that p = 30%, and conclude that the
new medication may have been significantly improved

e Theorem 3.7 (p.107). Let Y be a binomial RV with
parameters n (trials) and p (success probability). Then
i = E(Y) =np and GZ=V(Y)=nquorq=1-p.

e Proofs of the above results are instructive and should
be carefully worked through.

e p. 105, ex. 3.8. In a binomial setting with n = 20, we
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observe y = 6 “successes” (whether the employee
favors the new retirement policy). To estimate p, we
can use the technique of maximum likelihood (ML)
estimation: the likelihood here is

n
L) =pO) = ()P’ —p)" e p*(1 - p)t*
Maximizing the likelihood is equivalent to maximizing
the log-likelihood — whence,

d |6In(p) + 14In(1 )] 6 14
—|6Iln n(1l-— =———
dp P Pl 1-p
So the ML estimate (MLE) is p = % =0.30
Section 3.5

e Related to the binomial distribution is the geometric
distribution, where Y = # of ‘tosses’ for the first success

e Def. 3.8 (p.115). ARV Y has the Geometric probability
distribution with success probability p if and only if

p(y)=q¢” pfory=1,2,3..,0<p<1

e The probability histogram for a geometric RV with p =
%2 0n p.115

e p. 116, ex. 3.11. A “success” is engine malfunction
during a one-hour period, p = 0.02, & we want the
probability the engine survives two hours=P(Y23)=1
-P(Y<2)=1-p-qgp=1-0.02-(0.02)(0.98) = 0.9604
Y = the # of one-hour intervals until the 1°° malfunction
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e Some other texts (and R) define the geometric RV to
be the number of failures until the first success (Y*);
noting that Y* =Y -1, in the above, we have
P(Y 23) = P(Y*22)=1-P(Y* < 1); in R, we get:

1-pgeom(1,0.02)
0.9604

e Theorem 3.8 (p.116). Y has the geometric distribution
(i.e., our definition!) with success p, then

1-p

p2

e Again, the proofs are very instructive (need to use your
geometric series, which are very important!)

e p. 116, ex. 3.11 (continued). For the engine failure ex.,
u=1/0.02 = 50, ¢ = 0.98/0.02> = 2450 = 49.5°, so we
expect to wait 50 hours give or take 50 hours.

e p.118, ex. 3.13. In a geometric setting with unknown p,
the first person who likes the policy (success) is the 5t
one interviewed, and we again use ML estimation:

Lp) =p(y) =1 -p)'p =£1 = 119)419

d
dp [4In(1 —p) + In(p)] = 1-p + >

So, the ML estimate (MLE) is p = % = 0.20

e Per p.119, ex. 3.71, for Y a Geometric RV with success
probability p, we have (a) P(Y > a) = q°, and so (b) the
memory-less property: P(Y>a+b|Y >a)=P(Y > b)
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Section 3.6
e Related to the GEO distribution is the Negative
Binomial NB distribution which waits for the r'" success
e Fory2r, if the r'" success occurs on trial y, then we
know that (r-1) successes occurred on trials 1 to (y-1),
and this latter event is binomial — this leads to the
following probability function for the NB distribution:

p(y) = (i’:i)p’”qy"‘; y=rr+1r+2.,0<p<1

e p.122, ex.3.14: drilling oil wells with p=0.2, r = 3, then

p(5) = (g - i) (0.2)3(0.8)2 = 0.0307

e The R command for the previous calculation is
“dnbinom(ye-r,r,p)” or here “dnbinom(2,3,0.2)”

e Not requested, but note that the R command
“pnbinom(2,3,0.2)” is equivalent to “dnbinom(0,3,0.2)
+ dnbinom(1,3,0.2) + dnbinom(2,3,0.2)”

e For a NB random variable with parameters p andr,

r(1-p)

pZ
e For ex.3.14, u = 3/0.2 = 15 and o = 3(0.8)/(0.2)* = 60.

p=EY)="/pando’ =V(Y) =

Section 3.7
e The Hypergeometric HG distribution can be thought of
as a ‘sampling without replacement’ analog of the
Binomial distribution; the population sizeis N, and r

are of one type (A) and the remaining (N-r) the other
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type (B). Thus, the proportion of the type A objects is p
=r/N, and we take a sample (without replacement) of
size n. Y is the number of type A objects.

e The probability distribution for a HG RV (Y) is

5)(a=y)
y/\n—y
N
()
e Constraints ony above are:y 2 n+r-Nand ys<r
e p.126,ex.3.16:N=20,n=10,r=y =35,

() (%)
(10)
¢ In R, instead of “choose(15,5)/choose(20,10)”, we can

just use “dhyper(yo,r,N-r,n)” - here “dhyper(5,5,15,10)”
e Yis a HG RV, then the mean and variance are
nr ) rN‘y(N—nm/N—n
p=EWY)=7rando” =V(¥) :"(N)( N )(N—l)
e Note that u = np, and denoting the factor % as ¢, we

p(y) =

= 0.0163

p(5) =

get G = np(1-p)9, similar to a BIN RV

e For givenn, as N — o, we get ¢ — 1, whence both the
mean and variance coincide with BIN dist.; so too do
the probability functions coincide since N — .o means
an infinite population in which case sampling with and
without replacement are essentially the same.
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e p.127,ex.3.17:N=20,n=5,p=4/20=0.2, and we
rejectifY>1,sop(Y>1)=1-p(0)-p(1) =0.2487;
also, n=5%0.20=1, o’ = 5*0.20*0.80*(15/19) = 0.6316

¢ In R: “1-phyper(1,4,16,5)” yields “0.24871"”

Section 3.8

e The Poisson POI distribution is related to the BIN
distribution as derived on p.131: for the number of
occurrences of some event over a time interval, we
break the interval to n equal-length sub-intervals so
that occurrences on the sub-intervals are independent
and p(0) =1-p, p(1) = p, and p(2 or more) =0

e Here, p is the probability of an occurrence (a ‘success’)
on any sub-interval

e Then the total number of occurrences on the larger
interval has the POI distribution with mean A = np

e The POI probability function with parameter A is

1Y
p(y) =?e"1 fory=0,1,2...and 1> 0

.. . k™
¢ In our derivations, recall that llmn_)Oo (1 + —) = ek

n
. kZ 2 k4-

and that e = 72 ) — —1+ + + +oo+

e For a given problem or exermse, always note the
[larger] interval length (see ex. 3.22 below)
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e p.132, ex.3.19: Per 30-minute period, A = 1 (one visit

per half-hour period), so p(y) = %e‘l and p(0) = e™/1

= 0.368, p(1) = /1 = 0.368, and p(2) = e™'/2 = 0.1839;
P(Y21)=1-p(0)=1-e" =0.6321

e InR, “dpois(2,1)” gives “0.1839397”, and for P(Y = 1),
typing “1-ppois(0,1)” yields “0.6321206”

e p.134, ex.3.21 demonstrates that the POI distribution
can provide a good approximation to the BIN for large
n & small p: the exact BIN answer is pbinom(3,20,0.1)
= 0.8670467, and POI gives ppois(3,2) = 0.8571235.

e p. 134, Theorem 3.11 states that for Y a POI RV with
parameter A, u = o° = A. Again, proofs are important.

e p.135, ex.3.22 (Poisson Process): average is stated as 3
accidents per month, but since the rest of the exercise
concerns 2-month period, take A = 2(3) = 6 (accidents
per 2-month period). We obtain the desired P(Y2>10)
using R: 1-ppois(9,6) = 0.08392402. Since this p-value
is not unusually small, we can conclude that 10
accidents in the past 2 months is not indicative that
the mean has increased (from old mean of A = 6).

Section 3.9
e We define a function, called the moment generating
function, MGF, which can be used to obtain (generate)
the moments of a distribution. At this point, the MGF
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appears only theoretical, but we will find it very useful
later to identify the distribution of a given RV.

e p.138, Definition 3.12: The k™ moment of the RV Y
about the origin or about zero is y;, = E(Y*)

e p.138, Definition 3.13: The k™ moment of Y about its
mean or central moment is p; = E|(Y — p)*|

o Thus, p} = u, py, = E(Y?) = 0% + p?, 1y = 0, and
[, = o*; other moments (such as skewness and
kurtosis) can also be calculated.

e p.139, Definition 3.14: The MGF, m(t), foraRV Y is
m(t) = E(e"’) provided there exists a positive constant b
such that m(t) is finite for |t] < b

e Provided m(t) exists, it’s easy to show that (see p.139)

2 £3

m(t) =E(e?) =1+t o el 4 -
= = 251 2!”2 3!H3

e p.139, Theorem 3.12: If m(t) exists, then for any

positive integer k,

k
' ;nlft) =m®(0) = u,
A P

That is, the k™ derivative of m(t) with respect to t and

evaluated at t = 0 gives ;.
e It is shown (p.140, ex.3.23; p.142, ex.3.145; and p.142,

ex.3.147) that the MGFs for the Poisson, Binomial and
Geometric distributions are as follows (center column):
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Distribution MGF PGF
Poisson m(t) = ete-D p.146 ex.3.165
Binomial |\m(t) = (pet+q)"| p.146 ex.3.164
Geometric pet pt
m(t) = n(t) =
) =1_ get 1—qt

e For the GEO MGF, it is necessary that ge‘ < 1, i.e., that
t < -In(qg). Since there is an interval around zero for
which E(e") exists, m(t) is indeed well-defined.

e p.141, ex.3.24: For a Poisson RV, m(t) = e*¢"~D, 5o
m'(t) = Aete’© D so uy = m’'(0) = A and
m''(t) = A[1e2te D) + etere D] thus ), =
m"’(0) =A(A+1) =22+ 1. So,6’°=A"+L-A"= .

e p.141, ex.3.25: If Y is a RV with MGF m(t) = e32(¢"-D),

then we know it has a Poisson distribution with mean

A =3.2. That is, we can identify the distribution by the
uniqueness property of MGFs.

Section 3.10
e p.144, Definition 3.15: For the discrete RV Y, let P(Y=k)
be denoted p, for k=0,1,2,..., then for all t such that it is
finite, the probability generating function PGF of Y is

r(t) = E(t¥) = zliopktk
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e p.144, Definition 3.16: For the RV Y and k a positive
integer, the k™ factorial moment is

p =EY®)=E[Y(¥ -1D)(¥ -2)..(Y -k + 1)]
e p.144, Theorem 3.13: If =t(t) is the PGF for the integer-
valued RV Y, then we can obtain factorial moments by:

d ()
_ () (1) —
= 1T 1) =
ditk . (1) = ppgg
e p.145, ex.3.26: For GEO and t < 1/q, Tr(t) = ——

1—qt
e p.145, ex.3.27: From above, 1'(t) = p(1-qt) >, so ©’(1) =

p/(1-q)* = 1/p. Also, ”’(t) = 2pq(1-qt)°>, so u; = 2q/p’

Section 3.11
e Empirical Rule: For distributions that resemble the
Normal distribution, approximately 68%, 95% and
99.7% are within 1, 2 and 3 ¢’s of .
e For any distribution, however, Chebyshev’s theorem
gives a lower bound: for constant k > 0,

P(lY —pl <ko)z1-1/,,

Equivalent to the above is:
P(IY —pl 2 ko) <1/,

e Thus, for any distribution, lower bounds to the
coverage within 1, 2 and 3 ¢’s of p are: 0, 75% & 88.9%
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