836 Appendix 1

Matrices and Other Useful Mathematical Results

The Binomial Expansion of (x + y)" Let x and y be any real numbers, then
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The Sum of a Geometric Series Let r be a real number such that || < 1, and m be
any integer m > 1
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The (Taylor) Series Expansion of ¢* Let x be any real number, then
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Some useful formulas for particular summations follow. The proofs (omitted) are
most easily established by using mathematical induction.
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Gamma Function Lett > 0, then I'(¢) is defined by the following integral:
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Using the technique of integration by p(z)trts, it follows that for any t > 0
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and if ¢+ = n, where n is an integer,
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Further,
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If a, B > 0, the Beta function, B(«, ), is defined by the following integral,
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and is related to the gamma function as follows:
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Bleh) = ratp;



