The Binomial Expansion of $(x+y)^{n}$ Let $x$ and $y$ be any real numbers, then

$$
\begin{aligned}
(x+y)^{n} & =\binom{n}{0} x^{n} y^{0}+\binom{n}{1} x^{n-1} y^{1}+\binom{n}{2} x^{n-2} y^{2}+\cdots+\binom{n}{n} x^{0} y^{n} \\
& =\sum_{i=0}^{n}\binom{n}{i} x^{n-i} y^{i}
\end{aligned}
$$

The Sum of a Geometric Series Let $r$ be a real number such that $|r|<1$, and $m$ be any integer $m \geq 1$

$$
\sum_{i=0}^{\infty} r^{i}=\frac{1}{1-r}, \quad \sum_{i=1}^{\infty} r^{i}=\frac{r}{1-r}, \quad \sum_{i=0}^{m} r^{i}=\frac{1-r^{m+1}}{1-r}
$$

The (Taylor) Series Expansion of $e^{x}$ Let $x$ be any real number, then

$$
e^{x}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}
$$

Some useful formulas for particular summations follow. The proofs (omitted) are most easily established by using mathematical induction.

$$
\begin{aligned}
\sum_{i=1}^{n} i & =\frac{n(n+1)}{2} \\
\sum_{i=1}^{n} i^{2} & =\frac{n(n+1)(2 n+1)}{6} \\
\sum_{i=1}^{n} i^{3} & =\left(\frac{n(n+1)}{2}\right)^{2} .
\end{aligned}
$$

Gamma Function Let $t>0$, then $\Gamma(t)$ is defined by the following integral:

$$
\Gamma(t)=\int_{0}^{\infty} y^{t-1} e^{-y} d y
$$

Using the technique of integration by parts, it follows that for any $t>0$

$$
\Gamma(t+1)=t \Gamma(t)
$$

and if $t=n$, where $n$ is an integer,

$$
\Gamma(n)=(n-1)!
$$

Further,

$$
\Gamma(1 / 2)=\sqrt{\pi}
$$

If $\alpha, \beta>0$, the Beta function, $B(\alpha, \beta)$, is defined by the following integral,

$$
B(\alpha, \beta)=\int_{0}^{1} y^{\alpha-1}(1-y)^{\beta-1} d y
$$

and is related to the gamma function as follows:

$$
B(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}
$$

