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A1.1 Matrices and Matrix Algebra
The following presentation represents a very elementary and condensed discussion
of matrices and matrix operations. If you seek a more comprehensive introduction
to the subject, consult the books listed in the references indicated at the end of
Chapter 11.
We will define a matrix as a rectangular array (arrangement) of real numbers and

will indicate specific matrices symbolically with bold capital letters. The numbers
in the matrix, elements, appear in specific row-column positions, all of which are
filled. The number of rows and columns may vary from one matrix to another, so
we conveniently describe the size of a matrix by giving its dimensions—that is, the
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822 Appendix 1 Matrices and Other Useful Mathematical Results

number of its rows and columns. Thus matrix A

A
2×3
=
[
6 0 −1
4 2 7

]
possesses dimensions 2 × 3 because it contains two rows and three columns. Simi-
larly, for

B
4×1
=

⎡
⎢⎢⎣

1
−3
0
7

⎤
⎥⎥⎦ and C

2×2
=
[

2 0
−1 4

]

the dimensions of B and C are 4 × 1 and 2 × 2, respectively. Note that the row
dimension always appears first and that the dimensions may be written below the
identifying symbol of the matrix as indicated for matrices A, B, and C.
As in ordinary algebra, an element of a matrix may be indicated by a symbol,

a, b, . . . , and its row-column position identified by means of a double subscript.
Thus a21 would be the element in the second row, first column. Rows are numbered
in order from top to bottom and columns from left to right. In matrix A, a21 = 4,
a13 = −1, and so on.
Elements in a particular row are identified by their column subscript and hence

are numbered from left to right. The first element in a row is on the left. Likewise,
elements in a particular column are identified by their row subscript and therefore are
identified from the top element in the column to the bottom. For example, the first
element in column 2 of matrix A is 0, the second is 2. The first, second, and third
elements of row 1 are 6, 0, and −1, respectively.
The term matrix algebra involves, as the name implies, an algebra dealing with

matrices, much as the ordinary algebra deals with real numbers or symbols represent-
ing real numbers. Hence, wewill wish to state rules for the addition andmultiplication
of matrices as well as to define other elements of an algebra. In so doing we will point
out the similarities as well as the dissimilarities between matrix and ordinary algebra.
Finally, we will use our matrix operations to state and solve a very simple matrix
equation. This, as you may suspect, will be the solution that we desire for the least
squares equations.

A1.2 Addition of Matrices
Twomatrices, sayA andB, can be added only if they are of the same dimensions. The
sum of the two matrices will be a matrix obtained by adding corresponding elements
of matrices A and B—that is, elements in corresponding positions. This being the
case, the resulting sum will be a matrix of the same dimensions as A and B.

EXAMPLE A1.1 Find the indicated sum of matrices A and B:

A
2×3
=
[

2 1 4
−1 6 0

]
B
2×3
=
[
0 −1 1
6 −3 2

]
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Solution
A+ B =

[
2 1 4
−1 6 0

]
+
[
0 −1 1
6 −3 2

]

=
[

(2+ 0) (1− 1) (4+ 1)
(−1+ 6) (6− 3) (0+ 2)

]
=
[
2 0 5
5 3 2

]
.

EXAMPLE A1.2 Find the sum of the matrices

A
3×3
=
⎡
⎣1 0 3
1 −1 4
2 −1 0

⎤
⎦ and B

3×3
=
⎡
⎣4 2 −1
1 0 6
3 1 4

⎤
⎦.

Solution
A+ B =

⎡
⎣5 2 2
2 −1 10
5 0 4

⎤
⎦.

Note that (A+ B) = (B+ A), as in ordinary algebra, and remember that we never
add matrices of unlike dimensions.

A1.3 Multiplication of a Matrix
by a Real Number
We desire a rule for multiplying a matrix by a real number, for example, 3A, where

A =
⎡
⎣ 2 1

4 6
−1 0

⎤
⎦.

Certainly we would want 3A to equal (A+ A+ A), to conform with the addition rule.
Hence, 3A would mean that each element in the A matrix must be multiplied by the
multiplier 3, and

3A =
⎡
⎣ 3(2) 3(1)

3(4) 3(6)
3(−1) 3(0)

⎤
⎦ =

⎡
⎣ 6 3

12 18
− 3 0

⎤
⎦.

In general, given a real number c and a matrixAwith elements aij , the product cA
will be a matrix whose elements are equal to caij .

A1.4 Matrix Multiplication
The rule for matrix multiplication requires “row-column multiplication,” which we
will define subsequently. The procedure may seem a bit complicated to the novice
but should not prove too difficult after practice. We will illustrate with an example.
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Let A and B be

A =
[
2 0
1 4

]
B =

[
5 2
−1 3

]
.

An element in the ith row and jth column of the product AB is obtained by mul-
tiplying the ith row of A by the jth column of B. Thus the element in the first row,
first column of AB is obtained by multiplying the first row of A by the first column
of B. Likewise, the element in the first row, second column would be the product of
the first row of A and the second column of B. Notice that we always use the rows of
A and the columns of B, where A is the matrix to the left of B in the product AB.
Row-column multiplication is relatively easy. Obtain the products, first-row ele-

ment by first-column element, second-row element by second-column element, third
by third, and so on, and then sum. Remember that row and column elements are
marked from left to right and top to bottom, respectively.
Applying these rules to our example, we obtain

A
2×2

B
2×2
=
[
2 0
1 4

] [
5 2
−1 3

]
=
[
10 4
1 14

]
.

The first-row-first-column product would be (2)(5)+ (0)(−1) = 10, which is located
(and circled) in the first row, first column ofAB. Likewise, the element in the first row,
second column is equal to the product of the first row ofA and the second column ofB,
or (2)(2)+(0)(3) = 4. The second-row-first-column product is (1)(5)+(4)(−1) = 1
and is located in the second row, first column ofAB. Finally, the second-row-second-
column product is (1)(2)+ (4)(3) = 14.

EXAMPLE A1.3 Find the products AB and BA, where

A =
⎡
⎣2 1
1 −1
0 4

⎤
⎦ and B =

[
4 −1 −1
2 0 2

]
.

Solution
A
3×2

B
2×3
=
⎡
⎣2 1
1 −1
0 4

⎤
⎦[

4 −1 −1
2 0 2

]
=
⎡
⎣10 −2 0

2 −1 −3
8 0 8

⎤
⎦

and

B
2×3

A
3×2
=
[
4 −1 −1
2 0 2

]⎡⎣2 1
1 −1
0 4

⎤
⎦ = [

7 1
4 10

]
.

Note that in matrix algebra, unlike ordinary algebra, AB does not equal BA. Be-
cause A contains three rows and B contains three columns, we can form (3)(3) = 9
row-column combinations and hence nine elements for AB. In contrast, B contains
only two rows,A two columns, and hence the productBAwill possess only (2)(2) = 4
elements, corresponding to the four different row-column combinations.
Furthermore, we observe that row-column multiplication is predicated on the as-

sumption that the rows of the matrix on the left contain the same number of elements
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as the columns of the matrix on the right, so that corresponding elements will exist
for the row-column multiplication. What do we do when this condition is not satis-
fied? We agree never to multiply two matrices, say AB, where the rows of A and the
columns of B contain an unequal number of elements.
An examination of the dimensions of the matrices will tell whether they can be

multiplied as well as give the dimensions of the product. Writing the dimensions
underneath the two matrices,

A
m×p

B
p×q

= AB
m×q

we observe that the inner two numbers, giving the number of elements in a row of A
and column of B, respectively, must be equal. The outer two numbers, indicating the
number of rows of A and columns of B, give the dimensions of the product matrix.
You may verify the operation of this rule for Example A1.3.

EXAMPLE A1.4 Obtain the product AB:

A
1×3

B
3×2
= [ 2 1 0 ]

⎡
⎣ 2 0

0 3
−1 0

⎤
⎦ = [ 4 3 ]

Note that product AB is (1 × 2) and that BA is undefined because of the respective
dimensions of A and B.

EXAMPLE A1.5 Find the product AB, where

A = [ 1 2 3 4 ] and B =

⎡
⎢⎢⎣
1
2
3
4

⎤
⎥⎥⎦.

Solution

A
1×4

B
4×1
= [ 1 2 3 4 ]

⎡
⎢⎢⎣
1
2
3
4

⎤
⎥⎥⎦ = [ 30 ].

Note that this example produces a different method for writing a sum of squares.

A1.5 Identity Elements
The identity elements for addition and multiplication in ordinary algebra are 0 and
1, respectively. In addition, 0 plus any other element, say a, is identically equal to a;
that is,

0+ 2 = 2, 0+ (−9) = −9.
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Similarly, the multiplication of the identity element 1 by any other element, say a, is
equal to a; that is,

(1)(5) = 5, (1)(−4) = −4.
Inmatrix algebra twomatrices are said to be equalwhen all corresponding elements

are equal. With this in mind we will define the identity matrices in a manner similar
to that employed in ordinary algebra. Hence, if A is any matrix, a matrix B will be an
identity matrix for addition if

A+ B = A and B+ A = A.

It easily can be seen that the identity matrix for addition is one in which every element
is equal to zero. This matrix is of interest but of no practical importance in our work.
Similarly, if A is any matrix, the identity matrix for multiplication is a matrix I

that satisfies the relation

AI = A and IA = A.

This matrix, called the identity matrix, is the square matrix

I
n×n

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
...

0 0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

That is, all elements in the main diagonal of the matrix, running from top left to
bottom right, are equal to 1; all other elements equal zero. Note that the identity
matrix is always indicated by the symbol I.
Unlike ordinary algebra, which contains only one identity element for multipli-

cation, matrix algebra must contain an infinitely large number of identity matrices.
Thus we must have matrices with dimensions 1× 1, 2× 2, 3× 3, 4× 4, and so on, so
as to provide an identity of the correct dimensions to permit multiplication. All will
be of this pattern.
That the I matrix satisfies the relation

IA = AI = A

can be shown by an example.

EXAMPLE A1.6 Let

A =
[

2 1 0
−1 6 3

]
.

Show that IA = A and AI = A.
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Solution I
2×2

A
2×3
=
[
1 0
0 1

] [
2 1 0
−1 6 3

]
=
[

2 1 0
−1 6 3

]
= A

and

A
2×3

I
3×3
=
[

2 1 0
−1 6 3

]⎡⎣1 0 0
0 1 0
0 0 1

⎤
⎦ = [

2 1 0
−1 6 3

]
= A.

A1.6 The Inverse of a Matrix
Formatrix algebra to beuseful,wemust be able to construct and solvematrix equations
for a matrix of unknowns in a manner similar to that employed in ordinary algebra.
This, in turn, requires a method of performing division.
For example, we would solve the simple equation in ordinary algebra,

2x = 6

by dividing both sides of the equation by 2 and obtaining x = 3. Another way to view
this operation is to define the reciprocal of each element in an algebraic system and
to think of division as multiplication by the reciprocal of an element. We could solve
the equation 2x = 6 by multiplying both sides of the equation by the reciprocal of
2. Because every element in the real number system possesses a reciprocal, with the
exception of 0, the multiplication operation eliminates the need for division.
The reciprocal of a number c in ordinary algebra is a number b that satisfies the

relation

cb = 1

that is, the product of a number by its reciprocal must equal the identity element for
multiplication. For example, the reciprocal of 2 is 1/2 and (2)(1/2) = 1.
A reciprocal in matrix algebra is called the inverse of a matrix and is defined as

follows:

DEFINITION A1.1 Let An×n be a square matrix. If a matrix A−1 can be found such that

AA−1 = I and A−1A = I

then A−1 is called the inverse of A.

Note that the requirement for an inverse inmatrix algebra is the same as in ordinary
algebra—that is, the product of A by its inverse must equal the identity matrix for
multiplication. Furthermore, the inverse is undefined for nonsquare matrices, and
hence many matrices in matrix algebra do not have inverses (recall that 0 was the only
element in the real number systemwithout an inverse). Finally, we state without proof
that many square matrices do not possess inverses. Those that do will be identified in
Section A1.9, and a method will be given for finding the inverse of a matrix.
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A1.7 The Transpose of a Matrix
We have just discussed a relationship between a matrix and its inverse. A second
useful matrix relationship defines the transpose of a matrix.

DEFINITION A1.2 Let Ap×q be a matrix of dimensions p × q . Then A′, called the transpose of
A, is defined to be a matrix obtained by interchanging corresponding rows and
columns of A; that is, first with first, second with second, and so on.

For example, let

A
3×2
=
⎡
⎣2 0
1 1
4 3

⎤
⎦.

Then

A
2×3
′ =

[
2 1 4
0 1 3

]
.

Note that the first and second rows of A′ are identical with the first and second
columns, respectively, of A.
As a second example, let

Y =
⎡
⎣ y1

y2
y3

⎤
⎦.

Then Y′ = [y1 y2 y3]. As a point of interest, we observe that Y′Y =∑3
i=1 y

2
i .

Finally, if

A =
⎡
⎣2 1 4
0 2 3
1 6 9

⎤
⎦

then

A′ =
⎡
⎣2 0 1
1 2 6
4 3 9

⎤
⎦.

A1.8 A Matrix Expression for a System
of Simultaneous Linear Equations
We will now introduce you to one of the very simple and important applications of
matrix algebra. Let

2v1 + v2 = 5

v1 − v2 = 1



A1.8 A Matrix Expression for a System of Simultaneous Linear Equations 829

be a pair of simultaneous linear equations in the two variables, v1 and v2. We will
then define three matrices:

A
2×2
=
[
2 1
1 −2

]
V
2×1
=
[
v1
v2

]
G
2×1
=
[
5
1

]
.

Note that A is the matrix of coefficients of the unknowns when the equations are
each written with the variables appearing in the same order, reading left to right, and
with the constants on the right-hand side of the equality sign. The V matrix gives the
unknowns in a column and in the same order as they appear in the equations. Finally,
the G matrix contains the constants in a column exactly as they occur in the set of
equations.
The simultaneous system of two linear equations may now be written in matrix

notation as

AV = G

a statement that can easily be verified by multiplying A and V and then comparing
the answer with G.

AV =
[
2 1
1 −1

] [
v1
v2

]
=
[
2v1 + v2
v1 − v2

]
=
[
5
1

]
= G.

Observe that corresponding elements in AV and G are equal—that is, 2v1 + v2 = 5
and v1 − v2 = 1. Therefore, AV = G.
The method for writing a pair of linear equations in two unknowns as a matrix

equation can easily be extended to a systemof r equations in r unknowns. For example,
if the equations are

a11v1 + a12v2 + a13v3 + · · · + a1r vr = g1

a21v1 + a22v2 + a23v3 + · · · + a2r vr = g2

a31v1 + a32v2 + a33v3 + · · · + a3r vr = g3
...

...
...

... = ...

ar1v1 + ar2v2 + ar3v3 + · · · + arr vr = gr

define

A =

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1r
a21 a22 a23 · · · a2r
a31 a32 a33 · · · a3r
...

...
...

...

ar1 ar2 ar3 · · · arr

⎤
⎥⎥⎥⎥⎥⎦ V =

⎡
⎢⎢⎢⎢⎢⎣

v1
v2
v3
...

vr

⎤
⎥⎥⎥⎥⎥⎦ G =

⎡
⎢⎢⎢⎢⎢⎣

g1
g2
g3
...

gr

⎤
⎥⎥⎥⎥⎥⎦.

Observe that, once again, A is a square matrix of variable coefficients, whereas V
andG are column matrices containing the variables and constants, respectively. Then
AV = G.
Regardless of how large the system of equations, if we possess n linear equations

in n unknowns, the system may be written as the simple matrix equation AV = G.
You will observe that the matrix V contains all the unknowns, whereas A and G

are constant matrices.
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Our objective, of course, is to solve for the matrix of unknowns, V, where the
equation AV = G is similar to the equation

2v = 6

in ordinary algebra. This being true, we would not be too surprised to find that the
methods of solutions are the same. In ordinary algebra both sides of the equation
are multiplied by the reciprocal of 2; in matrix algebra both sides of the equation are
multiplied by A−1. Then

A−1(AV) = A−1G

or

A−1AV = A−1G.

But A−1A = I and IV = V. Therefore, V = A−1G. In other words, the solutions to
the system of simultaneous linear equations can be obtained by finding A−1 and then
obtaining the product A−1G. The solutions values of v1, v2, v3, . . . , vr will appear in
sequence in the column matrix V = A−1G.

A1.9 Inverting a Matrix
We have indicated in Section A1.8 that the key to the solutions of a system of simul-
taneous linear equations by the method of matrix algebra rests on the acquisition of
the inverse of the A matrix. Many methods exist for inverting matrices. The method
that we present is not the best from a computational point of view, but it works very
well for the matrices associated with most experimental designs and it is one of the
easiest to present to the novice. It depends upon a theorem in matrix algebra and the
use of row operations.
Before defining row operations on matrices, we must state what is meant by the

addition of two rows of a matrix and the multiplication of a row by a constant. We
will illustrate with the A matrix for the system of two simultaneous linear equations,

A =
[
2 1
1 −1

]
.

Two rows of a matrix may be added by adding corresponding elements. Thus if
the two rows of theAmatrix are added, one obtains a new row with elements [(2+1)
(1−1)] = [3 0]. Multiplication of a row by a constant means that each element in the
row is multiplied by the constant. Twice the first row of the A matrix would generate
the row [4 2]. With these ideas in mind, we will define three ways to operate on a
row in a matrix:

1. A row may be multiplied by a constant.

2. A rowmay be multiplied by a constant and added to or subtracted from another
row (which is identified as the one upon which the operation is performed).

3. Two rows may be interchanged.

Given matrix A, it is quite easy to see that we might perform a series of row
operations that would yield some new matrix B. In this connection we state without
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proof a surprising and interesting theorem from matrix algebra; namely, there exists
some matrix C such that

CA = B.

In other words, a series of row operations on amatrixA is equivalent tomultiplying
A by a matrix C. We will use this principle to invert a matrix.
Place the matrix A, which is to be inverted, alongside an identity matrix of the

same dimensions:

A =
[
2 1
1 −1

]
I =

[
1 0
0 1

]
.

Then perform the same row operations on A and I in such a way that A changes
to an identity matrix. In doing so, we must have multiplied A by a matrix C so that
CA= I. Therefore, C must be the inverse of A! The problem, of course, is to find the
unknown matrix C and, fortunately, this proves to be of little difficulty. Because we
performed the same row operations onA and I, the identity matrix must have changed
to CI = C = A−1.

A =
[
2 1
1 −1

]
I =

[
1 0
0 1

]
.

↓ (same row operations) ↓
CA = I CI = C = A−1

We will illustrate with the following example.

EXAMPLE A1.7 Invert the matrix

A =
[
2 1
1 −1

]
.

Solution
A =

[
2 1
1 −1

]
I =

[
1 0
0 1

]
.

Step 1. Operate on row 1 by multiplying row 1 by 1/2. (Note: It is helpful to the
beginner to identify the row upon which he or she is operating because all other rows
will remain unchanged, even though they may be used in the operation. We will star
the row upon which the operation is being performed.)

*
[
1 1/2
1 −1

] [
1/2 0
0 1

]
.

Step 2. Operate on row 2 by subtracting row 1 from row 2.

*

[
1 1/2
0 −3/2

] [
1/2 0
−1/2 1

]
.

(Note that row 2 is simply used to operate on row 1 and hence remains unchanged.)
Step 3. Multiply row 2 by (−2/3).

*

[
1 1/2
0 1

] [
1/2 0
1/3 −2/3

]
.
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Step 4. Operate on row 1 by multiplying row 2 by 1/2 and subtracting from row 1.

*
[
1 0
0 1

] [
1/3 1/3
1/3 −2/3

]
.

(Note that row 2 is simply used to operate on row 1 and hence remains unchanged.)
Hence the inverse of A must be

A−1 =
[
1/3 1/3
1/3 −2/3

]
.

A ready check on the calculations for the inversion procedure is available because
A−1A must equal the identity matrix I. Thus

A−1A =
[
1/3 1/3
1/3 −2/3

] [
2 1
1 −1

]
=
[
1 0
0 1

]
.

EXAMPLE A1.8 Invert the matrix

A =
⎡
⎣2 0 1
1 −1 2
1 0 0

⎤
⎦

and check the results.

Solution

A =
⎡
⎣2 0 1
1 −1 2
1 0 0

⎤
⎦ I =

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦.

Step 1. Multiply row 1 by 1/2.

*
⎡
⎣1 0 1/2
1 −1 2
1 0 0

⎤
⎦

⎡
⎣1/2 0 0

0 1 0
0 0 1

⎤
⎦.

Step 2. Operate on row 2 by subtracting row 1 from row 2.

*

⎡
⎣ 1 0 1/2
0 −1 3/2
1 0 0

⎤
⎦

⎡
⎣ 1/2 0 0
−1/2 1 0
0 0 1

⎤
⎦.

Step 3. Operate on row 3 by subtracting row 1 from row 3.

*

⎡
⎣1 0 1/2
0 −1 3/2
0 0 −1/2

⎤
⎦

⎡
⎣ 1/2 0 0
−1/2 1 0
−1/2 0 1

⎤
⎦.

Step 4. Operate on row 2 by multiplying row 3 by 3 and adding to row 2.

*

⎡
⎣1 0 1/2
0 −1 0
0 0 −1/2

⎤
⎦

⎡
⎣ 1/2 0 0

−2 1 3
−1/2 0 1

⎤
⎦.
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Step 5. Multiply row 2 by (−1).

*

⎡
⎣1 0 1/2
0 1 0
0 0 −1/2

⎤
⎦

⎡
⎣ 1/2 0 0

2 −1 −3
−1/2 0 1

⎤
⎦.

Step 6. Operate on row 1 by adding row 3 to row 1.

*
⎡
⎣1 0 0
0 1 0
0 0 −1/2

⎤
⎦

⎡
⎣ 0 0 1

2 −1 −3
−1/2 0 1

⎤
⎦.

Step 7. Multiply row 3 by (−2).

*

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦

⎡
⎣0 0 1
2 −1 −3
1 0 −2

⎤
⎦ = A−1.

The seven row operations have changed the A matrix to the identity matrix and,
barring errors of calculation, have changed the identity to A−1.

Checking, we have

A−1A =
⎡
⎣0 0 1
2 −1 −3
1 0 −2

⎤
⎦
⎡
⎣2 0 1
1 −1 2
1 0 0

⎤
⎦ =

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦.

We see that A−1A = I and hence that the calculations are correct.

Note that the sequence of row operations required to convert A to I is not unique.
One person might achieve the inverse by using five row operations whereas another
might require ten, but the end result will be the same. However, in the interests of
efficiency it is desirable to employ a system.
Observe that the inversion process utilizes row operations to change off-diagonal

elements in the A matrix to 0s and the main diagonal elements to 1s. One systematic
procedure is as follows. Change the top left element into a 1 and then perform row
operations to change all other elements in the first column to 0. Then move to the
diagonal element in the second row, second column, change it into a 1, and change all
elements in the second column below the main diagonal to 0. This process is repeated,
moving down themain diagonal from top left to bottom right, until all elements below
the main diagonal have been changed to 0s. To eliminate nonzero elements above the
main diagonal, operate on all elements in the last column, changing each to 0; then
move to the next to last column and repeat the process. Continue this procedure until
you arrive at the first element in the first column, which was the starting point. This
procedure is indicated diagrammatically in Figure A1.1.
Matrix inversion is a tedious process, at best, and requires every bit as much labor

as the solutions of a system of simultaneous equations by elimination or substitution.
You will be pleased to learn that we do not expect you to develop a facility for matrix
inversion. Fortunately, most matrices associated with designed experiments follow
patterns and are easily inverted.
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A =

StartF I G U R E A1.1
Procedure for

matrix inversion

It will be beneficial to you to invert a few 2×2 and 3×3matrices.Matrices lacking
pattern, particularly large matrices, are inverted most efficiently and economically by
using a computer. (Programs for matrix inversion have been developed for most
computers.)
We emphasize that obtaining the solutions for the least squares equations

(Chapter 11) by matrix inversion has distinct advantages that may or may not be
apparent. Not the least of these is the fact that the inversion procedure is systematic
and hence is particularly suitable for electronic computation. However, the major
advantage is that the inversion procedure will automatically produce the variances of
the estimators of all parameters in the linear model.
Before leaving the topic of matrix inversion, we ask how onemay identify a matrix

that has an inverse. Reference to a discussion of linear equations in ordinary algebra
should reveal the answer.
Clearly, a unique solutions for a system of simultaneous linear equations cannot

be obtained unless the equations are independent. Thus if one of the equations is a
linear combination of the others, the equations are dependent. Coefficient matrices
associated with dependent systems of linear equations do not possess an inverse.

A1.10 Solving a System of Simultaneous
Linear Equations
We have finally obtained all the ingredients necessary for solving a system of simul-
taneous linear equations,

2v1 + v2 = 5

v1 − v2 = 1
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Recalling that the matrix solutions to the system of equations AV=G is V= A−1G,
we obtain

V = A−1G =
[
1/3 1/3
1/3 −2/3

] [
5
1

]
=
[
2
1

]
.

Hence the solutions is

V =
[
v1
v2

]
=
[
2
1

]

that is, v1 = 2 and v2 = 1, a fact that may be verified by substitution of these values
in the original linear equations.

EXAMPLE A1.9 Solve the system of simultaneous linear equations

2v1 + v3 = 4

v1 − v2 + 2v3 = 2

v1 = 1.

Solution The coefficient matrix for these equations,

A =
⎡
⎣2 0 1
1 −1 2
1 0 0

⎤
⎦

appeared in Example A1.8. In that example we found that

A−1 =
⎡
⎣0 0 1
2 −1 −3
1 0 −2

⎤
⎦.

Solving, we obtain

V = A−1G =
⎡
⎣0 0 1
2 −1 −3
1 0 −2

⎤
⎦
⎡
⎣42
1

⎤
⎦ =

⎡
⎣13
2

⎤
⎦.

Thus v1 = 1, v2 = 3 and v3 = 2 give the solutions to the set of three simultaneous
linear equations.

A1.11 Other Useful Mathematical Results
The purpose of this section is to provide the reader with a convenient reference
to some of the key mathematical results that are used frequently in the body of the
text.


