Optimal Design Strategies for Relative Potency using the Two-Parameter Log-Logistic Model

Pattaraporn Tusto1,3, Timothy E. O'Brien2, Montip Tiensuwan1,3,*

1Department of Mathematics, Mahidol University, Bangkok 10400, Thailand
2Department of Mathematics and Statistics, Loyola University, Chicago, Illinois 60660, USA
3Center of Excellence in Mathematics, CHE, Si Ayutthaya Road, Bangkok 10400, Thailand

*Corresponding author: e-mail: montip.tie@mahidol.ac.th

Abstract

In this paper, we focus on the D- and D$_s$-optimal designs for two-parameter log-logistic (LL2) relative potency model where the response variables are normal and binomial distributions. The D- and D$_s$-optimal designs are obtained by using D-optimal design and nesting strategy criterions, respectively. Furthermore, the general equivalence theorem is used to guarantee the D- and D$_s$-optimal designs. The results show that we obtain four support points for D-optimal designs and two support points for D$_s$-optimal designs.

AMS (2000) subject classifications: Primary 62K05; secondary 62B15

Keywords and phrases: General equivalence theorem, optimal design, relative potency, two-parameter log-logistic model.