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Abstract Modelling in bioassay often uses linear or nonlinear logistic regression models, and relative potency is often
the focus when two or more compounds are to be compared. Estimation in these settings is typically based on likelihood
methods. Here, we focus on the 3-parameter model representation given in Finney (1978) in which the relative potency is
a model parameter. Using key matrix results and the general equivalence theorem of Kiefer & Wolfowitz (1960), this paper
establishes key design properties of the optimal design for relative potency using this model. We also highlight aspects of
subset designs for the relative potency parameter and extend geometric designs to efficient design settings of bioassay. These
latter designs are thus useful for both parameter estimation and checking for goodness-of-fit. A typical yet insightful example
is provided from the field of toxicology to illustrate our findings.
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1. Introduction

Linear and nonlinear logistic regression modelling are amongst the most useful techniques used in bioassay to
determine relationships between attributes or variables. In studying biological and toxicological assays, logistic
modelling is ubiquitous and sensible since typically as concentrations of toxic substances are increased, survival
percentages tend to decrease and in congruence and systematic manner. Furthermore, these curves can be combined
so that compounds can be compared using the relative potency – often based on the ratio of the respective
percentiles such as the corresponding LD50’s. Introduction of LD50’s into these models introduces nonlinearities
and care is needed to obtain accurate estimates (including confidence intervals). Further, key matrices such as the
Fisher information matrix, play a key role in estimation; as highlighted below, these matrices are also pivotal in
choosing an efficient design since these designs are often chosen to maximize some functional of the information
matrix. In this work, we focus on modelling in the setting of comparing two substances using a nonlinear logistic
model adapted from Finney (1978), and we provide optimal, subset-optimal, and near-optimal geometric and
uniform design strategies. Background in quantal and logistic regression modelling is given in McCullagh &
Nelder (1989), Collett (2003), and Dobson & Barnett (2008). The assessment of relative potency using so-called
parallel-line assays, as well as background in and discussions of the larger field of bioassay, is provided in Finney
(1978). References for the overarching nonlinear modelling context include Seber & Wild (1989) and Bates &
Watts (2007). Optimal design strategies are introduced and illustrated in O’Brien & Funk (2003) and Atkinson
et al (2007), optimal design methods for relative potency are introduced in a different setting in Smith & Ridout
(2003), and geometric and uniform designs are examined in O’Brien et al (2009).
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With an eye to typical bioassay potency data and modelling, in what follows we underscore characteristics of
global and subset D-optimal designs, highlighting the benefits of derived geometric design strategies. As such,
practitioners are provided with useful guidelines and rules-of-thumb.

1.1. Quantal Dose-Response Modelling and Relative Potency

For the binary/binomial logistic model, the x variable corresponds to dose or concentration and the researcher
selects the k dose points to run the experiment. This dose selection – as well as the number of replicates at each
of these points – is the essence of the experimental design problem addressed here. This model assumes that
independently ni subjects (or experimental units) receive dose xi, and that the number of “successes” yi has a
binomial distribution with success probability πi. When the logit link and log-dose scale is appropriate, we obtain

πi =
ti

1+ti
with ti =

(
xi

θ2

)θ3
. In settings where two compounds are under consideration, we use this model with a

modification given in Finney (1978) and elsewhere,

xi = x1i + θ4x2i (1)

It is noted that we only consider points of the form xi = (x1i, 0) or (0, x2i) since interaction (synergy) is not
considered in the potency studies here. As such, the x1 variable corresponds to doses for the substance plotted
on the horizontal axis and x2 to the substance plotted on the vertical axis. Thus, in this model θ2 is the LD50

for x1, θ2/θ4 is the LD50 for x2, θ4 is the relative potency of horizontal substance to the vertical one; θ3 is the
associated slope parameter, and the respective curves are assumed parallel (see Smith & Ridout, 2003).

This three-parameter generalized nonlinear model can be fit using maximum likelihood estimation (MLE)
methods. Since algorithms to obtain MLE’s (such as the Newton-Raphson procedure discussed in Seber & Wild
(1989)) often require starting values, plotting the corresponding data with percent mortality versus dose of the
doses give eyeball estimates of the LD50’s as well as the slope parameter, θ3.

To illustrate, Nemeroff et al (1977) and Imrey et al (1982) assess the relative potency of peptides neurotensin
(N) and somatostatin (S); in our notation here, x1 corresponds to somatostatin and x2 corresponds to neurotensin.
The chosen dose levels (in µg) are for N: 0.01, 0.03, 0.1, 0.3, 1, 3, 10, and 30; and for S: 0.3, 1, 3, 10, 30, and
100. In this study, 10 mice were randomized to each of the peptide-dose combinations excepting that 30 mice
were randomized to each of 0.01 and 0.03 doses of N, so 180 total mice were used in this study. In addition to
θ̂3 = 0.7234, the corresponding MLE’s of the LD′

50s are θ̂2 = 29.47(S) and θ̂2/θ̂4 = 5.20(N), so the estimated
relative potency here is θ̂4 = 5.66; since the LD50 for N is lower, it is deemed more potent/toxic. These results, as
well as the original design and fitted curves are shown in the above graph.

A natural query is whether the model parameters could have been more efficiently (i.e., using a lower sample
size) estimated using the corresponding optimal design, which we consider next.
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2. Optimal Design Theory

An approximate design, denoted ξ, is written

ξ =

(
x1 x2 · · · xn

ω1 ω2 · · · ωn

)
. (2)

The ωi are non-negative design weights which sum to one; the xi are design points or vectors (as in the current
situation) that belong to the design space and are not necessarily distinct. Note that the model parameters are stacked
into the p-vector θ. For the constant-variance normal setting with linear or nonlinear normal model function η(x, θ),
the n× p Jacobian matrix is V = ∂η

∂θ and with Ω = diag(ω1, ω2, · · ·ωn), the p× p (Fisher) information matrix is

M(ξ, θ) = VTΩV (3)

Letting LL denote the log-likelihood, the corresponding information matrix in the general case of either non-
constant variance or non-normality is given by

M(ξ, θ) = −E

(
∂2LL

∂θ∂θT

)
(4)

As shown in Atkinson et al (2007) for binomial logistic models in general, the information matrix for the relative-
potency logistic model considered here has the same form as in (3) with an appropriate modification of the weight
matrix Ω; specifically, Ω in this case is a diagonal matrix with ith diagonal element ωiπi(1− πi), where πi is
the success probability. In many regression settings, since the (asymptotic) variance of θ̂MLE is proportional to
M−1(ξ, θ), designs are often chosen to minimize some (convex) function of M−1(ξ, θ). For example, designs
which minimize its determinant are called D-optimal. Since for nonlinear/logistic models, M depends upon θ,
so-called local (or Bayesian) designs are typically obtained.

The (approximate) variance of the predicted response at the value x is

d(x, ξ, θ) =
∂η(x, θ)

∂θT
M−1(ξ)

∂η(x, θ)

∂θ
= tr{M−1(ξ)M(x)} (5)

Here, M(x) = ∂η(x,θ)
∂θ

∂η(x,θ)
∂θT . Designs that minimize (over ξ) the maximum (over x ) of d(x, ξ, θ) in (5) are

called G-optimal. As noted above, since this predicted variance depends upon θ for logistic and nonlinear models,
researchers often seek optimal designs either using a “best guess” for θ (called a local optimal design) or assuming
a plausible prior distribution on θ (called a Bayesian optimal design).

For the relative potency model studied here, it can be shown that the (local) D-optimal design
ξ∗D comprises four support points and the four equal-weight (ωi =

1
4 , i = 1, 2, 3, 4). The support points

are:( 1
t∗ , 0), (t

∗, 0), (0, 1
t∗ ), (0, t

∗) for t∗ = 3.3970, which in turn is one of two reciprocal roots of the expression

(1 + t) +
3

2
(1− t)log(t) = 0 (6)

The other root of this expression is 1
t∗ = 0.2944.

Since from above ti =
(

x1i+θ4x2i

θ2

)θ3
, for the peptide example with θ̂2 = 29.47, θ̂3 = 0.7234, θ̂4 = 5.66 , we

easily translate from t′s to dose levels to obtain the equal-weight 4-point design for somatostatin (S) and neurotensin
(N): (S,N) = (5.44, 0), (159.80, 0), (0, 0.96), (0, 28.21). The first and third of these points lie on the 1

t∗ line
segment, whereas the second and fourth points lie on the t∗ line segment, equally spaced on a geometric (log)
scale from the t = 1 line segment. Henceforth, we give designs in terms of the t′s mindful that these can then be
converted into doses using the corresponding parameter estimates.

The General Equivalence Theorem (GET) of Kiefer and Wolfowitz (1960) establishes that D- and G-optimal
designs are equivalent. This work also shows that the variance function (5) evaluated using the D-/G-optimal
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design does not exceed the line y = p, where p is the number of model function parameters – but that it will exceed
this line for all other designs. A corollary establishes that the maximum of the variance function is achieved for the
D-/G-optimal design at the support points of this design; this result is quite useful for establishing optimality of a
given design.

For the peptide example and using the conjectured D-optimal design with reciprocal t′s coming from (6)
given above, we obtain algebraically the corresponding variance function using this optimal design (in terms of

t =
(

x
θ2

)θ3
),

d(x, ξ∗D, θ) =
t

t∗

(
1 + t∗

1 + t

)2 (
2 +

log2(t)

log2(t∗)

)
(7)

D-optimality is then proved by showing that for all values of t this expression is less than or equal to y = 3 and
invoking the General Equivalence Theorem to establish optimality.

Mindful that for the model considered here we are more interested in efficiently estimating the relative potency
parameter (θ4) than the other parameters, we consider the partition of the Fisher information matrix as

M =

[
M11 M12

M21 M22

]
. (8)

In this expression, each sub-matrix Mij is of dimension pi × pj , for i, j = 1, 2 and p1 + p2 = p. We envisage the
situation in which the parameter vector is similarly partitioned,

θ =

(
θ1
θ2

)
.

with θ1 of dimension p1 × 1, θ2 of dimension p2 × 1, and where θ2 is the parameter vector of interest and θ1 are
the nuisance parameters. Also, subset D-optimal designs, as discussed in Atkinson et al (2007), maximize

|M22 −M21M
−1
11 M12| =

|M|
|M11|

(9)

Noting problems associated with subset designs, O’Brien (2005) and Atkinson et al (2007) instead combine the
subset and full-parameter criteria and suggest that for β ∈

[
p2

p , 1
]
, designs be chosen to maximize the objective

function
Φβ(ξ, θ) =

1− β

p1
log|M11|+

β

p2
log|M22 −M21M

−1
11 M12| (10)

This objective function ranges from the D-optimal criterion for β = p2

p to the subset design criterion in (9) for

β = 1, For a given choice of β ∈
[
p2

p , 1
]

, we call designs that maximize (10) Dβ-optimal. Both the corresponding
variance function associated with (10) and an extension of the General Equivalence Theorem ensure Dβ-optimality
by plotting this variance function.

For the relative potency model considered here, we treat the LD50(θ2) and slope parameters (θ3) as nuisance
parameters, and the relative potency parameter (θ4) as the parameter of interest. Here, p1 = 2 and p2 = 1, so[
p2

p , 1
]
=

[
1
3 , 1

]
. Our results show that the optimal values of t =

(
x
θ2

)θ3
for Dβ-optimal designs satisfy (c.f.

equation (6))

(1 + t) +
1

1− β
(1− t)log(t) = 0 (11)

As with equation (6), the t-values which solve this expression are observed to be reciprocals. For example, for
β = p2

p = 1
3 , as noted, we obtain the D-criterion (and t∗ = 3.3970 ). Also, as the β values approach the D-subset

design (i.e., β → 1−1), the optimal (reciprocal) t-values approach 1, thereby producing a singular design. Designs
of this sort are addressed in Silvey (1980).
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A measure of the distance between an arbitrary design ξ and the D-optimal design ξ∗D is the D-efficiency
discussed in O’Brien & Funk (2003) and Atkinson et al (2007). For the peptide illustration, the D-efficiency of
the chosen design (ξC) in Nemeroff et al (1977) relative to the D-optimal design is(

|M(ξC)|
|M(ξ∗D)|

)1/3

= 0.6803 (12)

With a D-efficiency of 68.03%, this means that approximately 47% more (i.e.,1/0.6803) experimental units need
to be used with the chosen design ξC in Nemeroff et al (1977) to obtain the same information at the D-optimal
design. This means that the same information would be achieved using the D-optimal design and only 123 mice as
with the chosen design and 180 mice.

The above advantage notwithstanding, optimal designs can often only be used as starting points as they may
have associated shortcomings. One such shortcoming is that in most practical situations, optimal designs for p
-parameter model functions comprise only p support points (or perhaps p+ 1). Thus, these designs provide little
or no ability to test for lack of fit of the assumed model. As a result, researchers often desire near-optimal so-called
“robust” designs which have extra support points that can then be used to test for model adequacy. In the next
section, we give a very useful means to obtain robust optimal designs, and illustrate the associated benefits of these
designs.

3. Near-Optimal Geometric and Uniform Designs

The structure of the design chosen in Nemeroff et al (1977) – as well as numerous examples given in O’Brien et al
(2009) - underscores the popularity of geometric and uniform designs in practical settings. For the relative potency

model considered here with t =
(

x
θ2

)θ3
, x = x1 + θ4x2 , we now examine (K + 1)-point geometric designs of the

form t = a, ab, ab2 · · · abK , with a ≥ tmin and abK ≤ tmax. Here, K is specified by the researcher, and we provide
optimal values of a and b for given values of K as well as any associated information loss (as measured by the D-
efficiency). In our work, we have also sought optimal uniform designs of the form A,A+B,A+ 2B · · ·A+KB
(also with A ≥ tmin and A+KB ≤ tmax), but in all cases examined, geometric designs out-performed uniform
designs (higher D-efficiencies), so we limit our discussion here to our findings regarding optimal geometric designs
– i.e., those maximizing |M|.

Table 1. Values of K, optimal b∗, D-efficiencies, and t-values for optimal geometric designs for the Finney relative potency
model.

K b∗ D-efficiency t-values
1 11.54 100% t=0.2944, 3.3970
2 4.506 97.30% t=0.2219, 1, 4.5061
3 3.037 96.91% t=0.1889, 0.5738, 1.7427,5.2928
4 2.414 96.75% t=0.1717, 0.4143, 1, 2.4136, 5.8253
5 2.077 96.66% t=0.1609, 0.3341, 0.6939, 1.4411, 2.9930, 6.2160

Our results demonstrate that for the optimal geometric designs with optimal b value of b∗, our optimal design
algorithms yield a∗ = 1

(b∗)K/2 and again we note that the corresponding t-values are reciprocals. Examples are given
in Table 1 for K = 1, 2, 3, 4, 5. The case K = 1 corresponds to the (unconstrained) D-optimal design discussed
above. For the values of K considered here (i.e., ≤ 5), it is noted that the D-efficiencies are all above 96.5%,
meaning that the information loss associated with using any of these optimal geometric designs is indeed trivial.

To obtain optimal, subset and near-optimal geometric/uniform designs, we have used the “NLP” constrained
nonlinear optimization procedures in SAS/IML version 9.3 (SAS Institute, Cary NC), specifically using the
Newton-Raphson algorithm, “NLPNRA”. Sample SAS code is given in the Appendix. This optimization algorithm
requires the creation of a so-called module – such as the “CF” and “CF2” modules given in the Appendix – along
with constraints and starting values. In our results, D- or subset-optimality was then established by plotting the
associate variance function. Here, the “CF” module is used to obtain the (local) D-optimal design and the “CF2”
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module is used to obtain the optimal geometric design with K = 2. In the case of geometric designs (CF2), the
resulting optimal geometric design is obtained by optimizing over a and b (which are denoted “aa” and “bb” in the
SAS code).

To illustrate in the context of the peptide example and using a 5-point geometric design (i.e., with K = 4), we
obtain a 10-point design with optimal levels of the respective peptides: 2.579, 8.719, 29.47, 99.62, and 336.7µg for
somatostatin and 0.455, 1.539, 5.203, 17.59, and 59.45µg for neurotensin. From Table 1, since the middle t-value
here is 1, both of the middle values of somatostatin and neurotensin in this design correspond to the LD′

50s (ie,
29.47 and 5.204). Maintaining a total sample size of 180 mice, so with 18 mice at each of these 10 design points,
this near-optimal geometric design represents a 42.21% improvement (i.e., reciprocal D-efficiency) over the one
chosen in Nemeroff et al (1977). These results clearly demonstrate the advantage of taking account of optimal
design strategies – yet maintaining the practical geometric structure – when choosing the experimental design for
an experiment.

Of final note, in situations where there is an upper bound on the levels of the constituents (x1 and x2) and thus
on the t-values, the methods proposed here are easily constrained, for example to settings where abK ≤ c.

4. Summary

Researchers working in toxicology/bioassay require efficient design strategies for assessing relative potency
of similar compounds, and local D-optimal designs clearly provide a useful starting point or benchmark. As
demonstrated here, these optimal designs often lack the means to test for lack of fit of the assumed (binomial
logistic) model, so we advocate instead the use of near-optimal robust designs. Additionally, since most researchers
are accustomed to using geometric-type designs, the results provided here give practitioners clear suggestions as to
how these should then be chosen; optimal geometric designs can be obtained using Table 1. The suggested designs
are indeed very near to the optimal designs, often resulting in D-efficiencies above 95%. Clearly, an information
loss of less than 5% is trivial compared with the practical nature of geometric designs and the ability to assess
model goodness-of-fit.
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Appendix: SAS/IML Sample Code:

(1)SAS/IML module to obtain local D-optimal designs for the Finney relative potency model
start CF(des) global(th2,th3,th4);
a1=des[1]; b1=des[5];
a2=des[2]; b2=des[6];
a3=des[3]; b3=des[7];
a4=des[4]; b4=des[8];
a=a1//a2//a3//a4;
b=b1//b2//b3//b4;
w=(1/4)*j(4,1);
z=a+th4*b;
t=(z/th2)##th3;
den=1+t;
pi=t/den;
ompi=1/den;
on=j(4,1);
ww=w#pi#ompi;
v2=(th3/th2)*on;
v3=-(1/th3)*log(t);
v4=-th3*(1/z)#b;
v=v2||v3||v4;
omeg=diag(ww);
m=t(v)*omeg*v;
detm=det(m);
tomin=-detm;
return(tomin);
finish CF;
(2)SAS/IML module to obtain local geometric designs for the Finney relative potency model
start CF2(des) global(th2,th3,th4);
aa=des[1];
bb=des[2];
a1=th2*(aa**(1/th3)); b1=0;
a2=th2*((aa*bb)**(1/th3)); b2=0;
a3=th2*((aa*bb**2)**(1/th3)); b3=0;
a4=0; b4=(th2/th4)*(aa**(1/th3));
a5=0; b5=(th2/th4)*((aa*bb)**(1/th3));
a6=0; b6=(th2/th4)*((aa*bb**2)**(1/th3));
a=a1//a2//a3//a4//a5//a6;
b=b1//b2//b3//b4//b5//b6;
w=(1/6)*j(6,1);
z=a+th4*b;
t=(z/th2)##th3;
den=1+t;
pi=t/den;
ompi=1/den;
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on=j(6,1);
ww=w#pi#ompi;
v2=(th3/th2)*on;
v3=-(1/th3)*log(t);
v4=-th3*(1/z)#b;
v=v2||v3||v4;
omeg=diag(ww);
m=t(v)*omeg*v;
detm=det(m);
tomin=-detm;
return(tomin);
finish CF2;
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