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1 Introduction

Binary logistic and multi-category logit (MCL) regression models are amongst the
most popular techniques in applied research where a goal is to determine rela-
tionships between attributes and/or adjusting for covariates. As such, introductory
statistics texts cover these methods, and many applications-focused students note
their usefulness in basic statistical methods courses. Aside from choosing from
probit-based or logit-based link functions, modelling in the logistic case is relatively
straightforward. But the situation is complicated in the multi-category case since
several reasonable rival models have been suggested to handle these data. In these
MCL cases, the practitioner is thus faced with choosing one of these models over
the others, and, more importantly, deciding which experimental design to use. As in
all cases of modelling, it is desired that this design should then allow for efficient
model-parameter estimation and provide for a test of goodness-of-fit of the chosen
model.

Important background to quantal, logistic and multicategory modelling is given
in McCullagh and Nelder (1989), Agresti (2007, 2013), and Dobson and Barnett
(2008), and extensions and applications are provided in Finney (1978). Optimal
design strategies are introduced and illustrated in Silvey (1980), O’Brien and Funk
(2003) and Atkinson et al. (2007), and geometric and uniform designs are explored
in O’Brien et al. (2009).
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In the context of typical MCL modelling situations, in what follows we provide
needed background and introduce and demonstrate the usefulness of model-robust
near optimal designs, highlighting extensions that allow for geometric and uniform
design strategies. Thus, these results provide practitioners with useful guidelines in
situations where potentially several MCL models can be chosen for a given dataset.
Note that although the illustrations provided in this paper concern only three-
level outcomes with a single explanatory variable, the results have been applied
to numerous illustrations involving several independent variables and as many as
five outcome categories.

2 Quantal Dose-Response Modelling

For the binary logistic model, where the x variable corresponds to dose or
concentration, it is common that the researcher wishes to select the k dose points
to run the experiment. This dose selection as well as the number of replicates at
each of these points is the experimental design problem addressed here in a larger
context. For ni experimental units receiving dose xi, the logistic model holds that
the number of “successes” yi has a binomial distribution with success probability
� i; under the assumed logit link, we obtain the generalized linear model equation,

log
�

�i
1��i

�
D ˛ C ˇxi. Also, when this model function is reparameterized so that

the ED50 parameter � D �˛
ˇ

is a model parameter—so that the right-hand side in
this expression is ˇ(x � � )—the model then becomes generalized nonlinear model.
Important references for generalized linear and nonlinear models include McCul-
lagh and Nelder (1989), Agresti (2007, 2013), and Dobson and Barnett (2008).

In contrast with binary logistic situation—where experiments result in “suc-
cesses” or “failures”—often the number of outcomes is three or more. Commonly-
used models for these data include the adjacent category logit (ACL), baseline
category logit (BCL), continuation ratio (CR), and proportional odds (PO). For
example, in the case of K D 3 outcomes and single predictor x, the ACL model
is given by the simultaneous equations
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Denoting ex1 D e˛1Cˇ1x; ex2 D e˛2Cˇ2x; den D 1 C ex1 C .ex1/ .ex2/,
this expression is equivalent to �1 D (ex1)(ex2)/den,�2 D ex2/den,�3 D 1/den. To
obtain parameter estimates, confidence regions/intervals and experimental designs,
these expressions can be substituted into the log-likelihood expression. The BCL
model amends the left-hand sides of the expressions in (1) with (i) log(�1/�3) and
(ii) log(�2/�3). It is therefore observed that the BCL model is equivalent to the
ACL model through a simple reparameterization, and it is therefore subsumed by
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Table 1 Multicategory logit models for K D 3 outcomes
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results for the ACL model. Additional details regarding multicategory logit models
are given below as well as in Agresti (2007, 2013).

In addition to the ACL model, a listing of useful multicategory logit models is
given in Table 1. For K D 3 outcomes, each of these models entails two equations.
These expressions are easily extended to K > 3 outcomes where each model would
then contain (K � 1) equations.

As specified in Table 1, in addition to the ACL model, commonly-used models
include the two variants of the Continuation Ratio model (denoted CRA and CRB
here) as well as the Proportional Odds (PO) model. The PO model is derived from
the UPO model imposing the equal-slope restriction, viz, ˇ1 Dˇ2(Dˇ). In addition
to noting similarities and differences in models, an important goal in listing these
models here is to unify them under one umbrella in order to provide the researcher
with near-optimal robust designs (see Sect. 5).

Example 1 Price et al. (1987) provides toxicity data involving pregnant mice in
which the predictor variable is the concentration of a certain ether. The chosen
concentration levels in the study were xi D 0, 62.5, 125, 250, 500 mg/kg per day.
With respective sample sizes of ni D 297, 242, 312, 299, 285, the total sample size
is n D 1435 mice. The response variable here encompassed the three levels relating
to the status of the offspring: death, malformed, or normal. Among the model
functions given in Table 1, the model with the highest log-likelihood value (and
thus AIC) here is the CRB model, with maximum likelihood estimates: b̨1 D
�3:2479; b̌1 D 0:0064;b̨2 D �5:7019; b̌2 D 0:0174. In terms of interpretation
of these estimates, since equation (i) in the CRB model contrasts dead with alive
offspring and equation (ii) contrasts malformed with normal offspring, these results
are best interpreted in terms of odds ratios: as the concentration level increases by
an additional 100 mg/kg/day, the odds of a dead pup (versus alive) increases by a

multiplicative factor of e100b̌1 D 1:89 and the odds of a malformed pup (versus

normal) increases by a multiplicative factor of e100b̌2 D 5:68.
We return to this illustration below to demonstrate ways to improve upon the

chosen experimental design.
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3 Confidence Regions and Intervals

As noted in Seber and Wild (1989), in the case of normal linear and nonlinear
models involving the p-vector � of model parameters, (1 �˛)100% Wald confi-

dence regions for � are of the form:

�
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�TbVTbV
�
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�
� ps2F˛

�
.

In this expression, b� is the least-squares (i.e., maximum likelihood) estimate of
� , bV is the n � p Jacobian matrix of first derivatives evaluated at b� , s2 is the
mean square error (estimator of �2), and F˛ is a tabled F percentile with p and
n � p degrees of freedom with tail probability of ˛. The (1 �˛)100% likelihood-

based confidence region in this situation is
n
� 2 ‚ W S .�/ � S

�b�
�

� ps2F˛
o
.

Here, S(�) D (y � �(x, �))T (y � �(x, �)) D "T". These two regions will be nearly
equivalent depending upon the degree to which the (vector) model function, �(x, �),

is well-approximated by the planar expression, �
�

x;b�
�

C bV
�
� �b�

�
. In normal

linear models, this result is exactly met, and only approximately so for normal
nonlinear, generalized linear, and generalized nonlinear models.

In non-normal situations, such as those considered here, approximate
(1 �˛)100% likelihood-based confidence regions are of the formn
� 2 ‚ W 2

h
LL .�/ � LL

�b�
�i

� �2˛

o
, where LL(� ) is the model log-likelihood

and �2˛ is a tabled �2 percentile with p degrees of freedom and tail probability equal
to ˛. Wald and likelihood confidence intervals can be obtained from these regions
by conditioning or profiling; further details are given in Seber and Wild (1989) and
Pawitan (2013). Notably, often the researcher wishes to choose an experimental
design to reduce the length of the resulting confidence interval or the volume of the
resulting confidence region.

4 Optimal Design Theory

An n-point design, denoted � , is written

� D
(

x1 x2 : : : xn

!1 !2 : : : !n

)
(2)

The ! i are non-negative design weights which sum to one, and the xi are design
points (or vectors) that belong to the design space, and which are not neces-
sarily distinct. For the constant-variance normal setting with linear or nonlinear
normal model function �(x, �), the n � p Jacobian matrix is V D @�

@�
. Denoting

� D diag f!1,!2, : : : ,!ng, the p � p (Fisher) information matrix is then written

M .�;�/ D VT�V (3)
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In the more general case of either non-constant variance or non-normality, the
corresponding information matrix is given by

M .�;�/ D �E

�
@2LL

@�@�T

�
(4)

As underscored in Atkinson et al. (2007), the information matrix for the binary
logistic model has the same form as in (3) with an appropriate modification of
the weight matrix �. Since the (asymptotic) variance of b�MLE is proportional
to M�1(� , �), in many regression settings designs are often chosen to minimize
some (convex) function of M�1(� , �). For example, designs which minimize its
determinant are called D-optimal. As noted in Seber and Wild (1989), these designs
minimize the volume of the confidence region given in the previous section. Since
for nonlinear/logistic models, M depends upon � , so-called local (or Bayesian)
designs are typically obtained.

The (approximate) variance of the predicted response at the value x is

d .x; �;�/ D @� .x;�/

@�T M�1 .�/
@� .x;�/

@�
D tr

˚
M�1 .�/M.x/

�
(5)

Here, M.x/ D @�.x;�/
@�

@�.x;�/
@�T is the information matrix evaluated at the arbitrary

value x; note that in contrasting with Eq. (4) where it is highlighted that for nonlinear
models the information matrix depends upon the design and parameter values,
occasionally one or both of these symbols are drop in what follows merely for
typographic simplicity. Designs that minimize (over �) the maximum (over x) of
d(x, � , �) in (5) are called G-optimal. As stated above, since this predicted variance
depends upon � for logistic and nonlinear models, researchers often seek optimal
designs either using a “best guess” for � (called a local optimal design) or by
assuming a plausible prior distribution on � (called a Bayesian optimal design).

The General Equivalence Theorem (GET) of Kiefer and Wolfowitz (1960) estab-
lishes that D- and G-optimal designs are equivalent. This theorem also demonstrates
that the variance function (5) evaluated using the D�/G-optimal design does not
exceed the line y D p (where p is the number of model function parameters)—but
that it will exceed this line for all other designs. A corollary of the GET establishes
that the maximum of the variance function is achieved for the D�/G-optimal design
at the support points of this design. This result is very useful in demonstrating
optimality of a given design, by substituting it into (5) and plotting the resulting
variance function. Results and additional references for optimal design in binary
logistic settings are given in Abdelbasit and Plackett (1983) and Minkin (1987), and
in the general setting in Silvey (1980).

Example 1 Continued For the pregnant mice illustration and CRB model with the
(MLE) parameter estimates given above and design points in the range [0, 2000], the
local D-optimal design associates the respective weights w D 0.4058, 0.3805, 0.2136
with design support points (concentrations) x D 222.59, 401.35, 767.91. The
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Fig. 1 Variance function for CRB model using D-optimal design—pregnant mice example

corresponding variance-function plot is shown in Fig. 1 along with the cut line,
y D 4, since this model contains p D 4 parameters. D-optimality is established here
by noting that the variance function does not exceed the cut-line.

Mindful that for the models considered here we are typically more interested in
efficient estimation of only a subset of the model parameters, we partition the Fisher
information matrix as

M D
	

M11 M12

M21 M22



(6)

In this expression, each sub-matrix Mij is of dimension pi � pj for i, j D 1, 2, and
p1 C p2 D p. In the current situation, the parameter vector is similarly partitioned,

� D
�

�1

�2

�
with �1 of dimension p1 � 1, �2 of dimension p2 � 1, and �1 is the

parameter vector of interest and �2 are the nuisance parameters. Subset D-optimal
designs for �2 in the joint model, as discussed in Atkinson et al. (2007), are obtained
by maximizing

ˇ̌
M22 � M21M�1

11 M12

ˇ̌ D jMj
jM11j (7)
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Noting problems associated with subset designs, O’Brien (2005) and Atkinson
et al. (2007) instead combine the subset and full-parameter criteria and suggest that
designs be chosen to maximize the objective function

ˆ	 .�;�/ D 1 � 	
p1

log jM11j C 	

p2
log

ˇ̌
M22 � M21M�1

11 M12

ˇ̌
(8)

For 	 chosen in the interval
h
0; p2

p

i
, we call designs that maximize (8) D	-

optimal. The resulting designs range from D-optimal designs for the �1 parameters
in the smaller model containing only the �1 parameters for the choice 	D 0 to
D-optimal designs for the full � parameter vector in the larger model for the
choice 	 D p2

p . The corresponding variance function associated with (8) and
an extension of the General Equivalence Theorem are then used to ensure D	-
optimality of the resulting design by plotting the variance function, with the note that
this normalized variance function has cut line y D 1 instead of y D p. To illustrate
using the first example given in O’Brien (2005), the subset design for the two-
parameter intermediate product model comprises only a single design support point
and so is a singular design, whereas the D	-optimal design has two support points

for 	 in
�
0; p2

p

i
.

A measure of the distance or discrepancy between an arbitrary design �C and the
D-optimal design ��

D is the D-efficiency discussed in O’Brien and Funk (2003) and
Atkinson et al. (2007), and given by the expression

 
jM .�C/jˇ̌
M
�
��

D

�ˇ̌
!1=p

(9)

To illustrate, for an arbitrary design �C with a D-efficiency of 66.7%, the
researcher would need 50% more (1/0.667) experimental units to obtain the same
information as the D-optimal design. Thus, in this setting, the same information
would thus be achieved using the D-optimal design and only 120 experimental units
as with the chosen (arbitrary) design using 180 experimental units.

The above advantage (i.e., optimality) notwithstanding, optimal designs can
often only be used as a starting point in realistic situations since they often have
some associated shortcomings. One important shortcoming is that often in practice,
optimal designs for p-parameter model functions comprise only p support points,
and so they provide little or no ability to test for lack of fit of the assumed model.
Indeed, for the pregnant mice example discussed above, although the model contains
p D 4 model parameters, the D-optimal design contains only three support points, so
this design gives little or no means to check model adequacy. Further, in spite of the
important theoretical optimal design results given in Zocchi and Atkinson (1999),
Fan and Chaloner (2001), and Perevozskaya et al. (2003) for the CRB, CRA and
PO models respectively, these works do not directly deal with the model-robustness
issues raised and addressed here.
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Table 2 Local D-optimal designs for pregnant mice example

Continuation ratio A (CRA) model

��
CRA D

(
194:5 428:1 1682:0

0:3023 0:4531 0:2445

) Un-proportional odds (UPO) logit model

��
UPO D

(
0 353:2 678:2

0:3575 0:4066 0:2359

)

Adjacent category logit (ACL) model

��
AC D

(
193:5 425:5 1554:8

0:3037 0:4527 0:2435

) Continuation ratio B (CRB) model

��
CRB D

(
222:6 401:3 767:9

0:4058 0:3805 0:2136

)

Importantly, optimal designs can also vary substantially—including the ACL,
CRA, CRB and UPO models considered here. To illustrate, for the pregnant mice
example and the concentration-range [0, 2000] as used in Price et al. (1987), the
local D-optimal designs are given in Table 2 (obtained using the respective best
fitting model parameter estimates). Note that whereas one such optimal design
includes a concentration level as low as 0 mg/kg (i.e., for the UPO model), the
highest concentration in another design is almost 1700 mg/kg (i.e., for the CRA
model). This underscores the fact that optimal designs for one model may be very
inefficient for another model.

As noted above, the designs and design strategies considered to date have focused
primarily on efficiently estimating parameters in the assumed model, and not
focused on allowing for—or discriminating amongst—other MCL models. Since in
general rival models exist, clearly designs should also highlight which model best
fits the data. That is, researchers often desire near-optimal so-called “robust” designs
which have extra support points that can then be used to test for model adequacy.
We next give very useful means to obtain these robust near-optimal designs.

5 Near-Optimal Robust Design Strategies

The structure of the four multicategory logit models considered in Table 1 suggest
the following model function, which we refer to as the generalized ordinal logit
(GOL) model function:
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.i/ log
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.ii/ log
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(10)

In this expression, �1 and �2 are additional (or “hyper”) parameters introduced
to connect the above models. The ACL, CRA, CRB, and UPO models result
by choosing (�1, �2) D (0, 0), (0, 1), (1, 0), (1, 1), respectively. As a result, for the
GOL model, we impose the constraints 0 � �1 � 1, 0 � �2 � 1; numerically this is
achieved by imposing for example for i D 1; 2; �i D e i

1Ce i
so when  i varies

between �1 and 1, (�1, �2) is bounded in the unit square. Estimation of the six
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model parameters (including the hyper-parameters) can easily be achieved using
maximum likelihood estimation algorithms. Although none of the ACL, CRA, CRB,
or UPO models are special cases of another, since each of these models is nested in
the larger GOL model, differences between each of these models and the best-fitting
GOL model can be evaluated using the asymptotic �2 test statistic (i.e., two times
the change in log-likelihood) with associated 2 degrees of freedom. Further, subsets
of this larger family can also be connected: an important such special case of the
GOL model is the UPOCRB model, obtain for �1 D 1. This latter model connects
UPO and CRB models, and is demonstrated in the illustration below.

The key goal of our introducing the GOL model here is to facilitate our obtaining
model-robust near-optimal designs. This is achieved by viewing the assumed model
function chosen from one of the constituents (viz, ACL, CRA, CRB, and UPO) as
an element of the GOL family and using the modified subset design procedure given
in (8) to obtain D	-optimal designs. For example, if the ACL is the assume model
function with given a priori parameter estimates for this ACL model, it is suggested
to use design criterion (8) with �T

2 D .�1; �2/ D .0; 0/ and �T
1 D .˛1; ˇ1; ˛2; ˇ2/

fixed at the a priori parameter estimates. We choose the tuning parameter 	 in (8)
so that the D-efficiency given in (9) for the ACL model exceeds some lower bound
such as 90%. We thereby obtain an efficient model-robust D	-optimal design. This
is illustrated in the following example.

Example 1 Continued For the pregnant mice illustration, the best fitting model is
the CRB model and second best fitting model is the UPO model. As highlighted in
Table 2, the (local) optimal designs for these two models differ substantially, with
one design containing a lowest concentration of 0 and the other containing a lower
bound in excess of 200. Further, since the fit of these two models to these data is far
superior to the other two models, we view the chosen CRB model as embedded in
the UPOCRB model. As noted above, we envision the frequently-encountered situ-
ation in which the researcher has the CRB model in mind (with a priori parameter
estimates), and desires a near-optimal design which satisfies the dual objectives of:
(1) efficiently estimating the CRB model parameters, and (2) providing for some
ability to test for lack-of-fit in the direction of the UPO model. Taking 	D 0.05,
the local D	-optimal design assigns the weights w D 0.0856, 0.3635, 0.3572, 0.1937
to the design points (concentrations) x D 0, 230.5, 405.8, 760.9. We underscore that
the additional design support point reflects the multi-objective nature of this design.
Indeed, D	-optimality of this design is established by noting that the corresponding
variance function, plotted in Fig. 2, lies below the cut line y D 1. The associated
D-efficiency for this design for the CRB model is 95.3% and for the UPO model
exceeds 80%, and so it is therefore quite efficient for both models. Certainly, if
the researcher was concerned with departures from the assumed CRB model in the
direction of the ACL and/or CRA models in addition to the UPO model, we would
easily embed the CRB model in the larger GOL model and find the associated D	-
optimal design.

The structure of the design chosen in Price et al. (1987), as well as several
additional examples given in O’Brien et al. (2009), underscores the popularity of
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Fig. 2 Variance function for UPOCRB model using D	 -optimal design—pregnant mice example

geometric and uniform designs in practical settings. Thus, we also examine here
robust geometric designs of the form x D a, ab, ab2 : : : abK for multicategory logit
models, checking to see whether addition of the point x D 0 improves this geo-
metric design. Here, K is specified by the researcher, and computer maximization
algorithms are used to obtain optimal values of a and b as well as any associated
information loss (as measured by the D-efficiency). We have also obtained optimal
uniform designs of the form A, A C B, A C 2B : : :A C KB, letting the final choice of
the design structure (geometric or uniform) be the one with the higher D-efficiency
or up to the researcher’s discretion. So that the final design is robust to the assumed
model function choice, we recommend obtaining local D	-optimal designs using
the modified subset design procedure given in (8) and with 	 chosen to yield a
sufficiently-high final D-efficiency for the assumed sub-model.

Example 1 Continued For the pregnant mice illustration and now embedding
the CRB model in the GOL model, we have noted somewhat higher D-
efficiencies for geometric designs over uniform designs, so we highlight only
geometric designs here. As such, we have sought designs which associate
weights of the form !� , 1�!�

4
, 1�!�

4
, 1�!�

4
, 1�!�

4
respectively with support

points x D 0, a, ab, ab2, ab3. Hence, robust geometric designs have been obtained
here by optimizing over !� , a, b. Choosing 	D 0.10 yields the optimal values
!� D 0.054, a D 160.2, b D 1.65, and produces a robust optimal design with D-
efficiency (for the CRB model) of 90.6%. For the total sample size used by the
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authors (n D 1435), this design assigns 79, 339, 339, 339, 339 mice to the respective
concentrations x D 0, 169.2, 264.2, 435.8, 718.9. We emphasize that the original
design used in Price et al. (1987) given above—with nearly uniform weights and
geometric support points x D 0, 62.5, 125, 250, 500—has D-efficiency (for the CRB
model) of only 62.8%. Therefore, with a D-efficiency in excess of 90%, the robust
optimal geometric design strategy and design suggested here is strongly favored.

Some additional extensions—further demonstrating the breadth of our multiple-
objective design strategy—are provided in the following illustration.

Example 2 Zocchi and Atkinson (1999) presents a dataset in which seven sets of
500 housefly pupae were exposed to one of seven doses of gamma radiation. The
response variable for this study encompassed the three classes: death, opened but
died before complete emergence, and complete emergence. The chosen radiation
levels in the study were x D 80, 100, 120, 140, 160, 180, 200 Gy, and with equal
replicates of ni D 500 fly pupae per level, the total sample size was therefore
n D 3500. Due to nonlinearities involved with these data, the authors suggest
quadratic fits, and for the ACL, CRA, CRB and UPO models considered here, the
best-fitting is the quadratic CRA model,

8<
:

.i/ log
�
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�
D ˛1 C ˇ1x C �1x2

.ii/ log
�
�1C�2
�3

�
D ˛2 C ˇ2x C �2x2

(11)

We underscore that, with design points constrained to lie in the design space
[80, 200], the (local) D-optimal design for this model places equal weights at only
three design points: x D 80, 125.2, 163.6. With only three support points, this design
is thus of limited use to detect lack of fit of the assumed model. This model is easily
embedded in the corresponding quadratic GOL model (which then contains eight
parameters), and local D	-optimal designs using the modified subset design proce-
dure given in (8) can then be easily obtained. Here, with 	D 0.25, the local D	-
optimal design associates the weights w D 0.2423, 0.0456, 0.2272, 0.2454, 0.2395
with the five design points x D 80, 97.8, 116.1, 147.4, 182.1. With a D-efficiency of
93.5%, this design represents only a minor information loss but a vast improvement
in terms of additional design support points and thus the ability to test for
model adequacy. To justify the claim of optimality, the corresponding scaled
variance function is given in Fig. 3, and D	-optimality is established by noting
that this function lies below the cut-line y D 1. Also, among designs of the
form A, A C B, A C 2B, : : : , A C 6B, using 	D 0.10, the local D	-optimal uniform
design has the support points, x D 80, 96.6, 113.2, 129.8, 146.4, 163.0, 179.6. Our
final recommendation would be to allocate 500 fly pupae to each of these seven
radiation levels. Whereas the original (uniform) seven-point design given in Zocchi
and Atkinson (1999) has a D-efficiency (viz-a-viz the CRA model) of 84.1%,
this proposed design increases the D-efficiency to 92.1%, and represents a modest
improvement.



72 T.E. O’Brien and C. Lim

Fig. 3 Variance function for GOL model using D	 -optimal design—house flies example

6 Discussion

In addition to linear and logistic regression models, researchers often find that
multi-category logit models—including the adjacent category logit, baseline cate-
gory logit, continuation ratio and proportional odds models considered here—are
useful for modelling their data. The resulting parameter estimates then aid these
researchers to make predictions or comparisons under different settings, for example
using estimated odds ratios across strata. As such, practical experimental design
methodologies are needed to gather the data to estimate these values and make
needed predictions, and these researchers often consider using optimal designs.

But important theoretical optimal design results that are applicable only to the
assumed model function are of only limited use to the practitioner. As noted, most
optimal designs for models containing only p support points comprise no more than
p support points, and this is certainly the case for the MCL models considered
here. Underscoring this fact, Govaerts (1996) comments that this limitation prevents
the use of optimal designs in most industrial settings. Therefore, the multiple-
objective design strategies introduced and illustrated here for multi-category logit
models—as well as in Hyun and Wong (2015) for normal nonlinear models—are
paramount in applied research. Additionally, the extension of our GOL nesting
strategy to incorporate geometric- and uniform-type designs gives practitioners
clear suggestions as to how these designs in situations where they are desired. The
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suggested designs suggested here are indeed very “near” to the optimal designs in
the sense that often the resulting D-efficiency is above 90%. As such, practitioners
typically find that an information loss of less than 10% is relatively small compared
to the practical nature of geometric and uniform robust designs and the resulting
ability to assess model goodness-of-fit.

We conclude by pointing out that beyond the MCL models considered here—
viz, the PO, UPO, ACL, CRA and CRB—authors such as Agresti (2010) and others
have introduced yet more models for ordinal response data, and extensions of our
methods provided here to these additional cases are now under study.
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