
Ef�cient Experimental Design for the Behrens-Fisher Problem

With Application to Bioassay

Holger DETTE and Timothy E. O’BRIEN

A common experimental design for the problem of comparing

two means from a normal distribution assumes knowledge of

the ratio of the population variances. The optimal sampling ra-

tio is proportional to the square root of this quantity.This article

demonstrates that a misspeci�cation of the ratio of the popula-

tion variances can cause a substantial loss in power of the cor-

responding tests. As a robust alternative, a maximin approach

is used to construct designs, which are ef�cient, whenever the

experimenter is able to specify a speci�c region for the ratio of

the population variances. The advantages of the robust designs

for inference in the Behrens-Fisher problem are illustrated in a

simulation study and an application to the design of experiment

for bioassay is presented.
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1. INTRODUCTION

The problem of comparing the means of two populations

based on a sample of observations is of fundamental importance

in applied statistics. Let ·i; ¼2
i denote the population mean and

variance of the ith population for i = 1; 2, then the parameter

of interest is typically the difference of the means · = ·1 ¡ ·2

or the ratio » = ·2=·1: If the ratio µ = (¼2
2=¼2

1) of the popu-

lation variances is unknown and the underlying populations are

assumed normally distributed, the scenario is the well known

Behrens-Fisher problem (see Scheffé 1970). There is a large

number of articles in which various tests are suggested con-

cerning the hypothesis regarding the difference of the means ·:
In the case of testing simple hypotheses, Welch’s approximate

t-solution (see Welch 1936, 1938) appears to be a good com-

promise between a test that is unbiased and that is appealing to

practitioners because of its simplicity; see, for example, Wang

(1971) and Best and Rayner (1987). This approach was further

extended by Dannenberg, Dette, and Munk (1994) for testing

interval hypotheses.

In contrast to the goal of constructing useful tests for the

Behrens-Fisher problem, the problem of allocatingobservations

Holger Dette is Professor, Ruhr-Universität Bochum, Fakultät für Mathe-

matik, 44780 Bochum, Germany (E-mail: holger.dette@ruhr-uni-bochum.de).

Timothy E. O’Brien is Assistant Professor, Loyola University Chicago, De-

partment of Mathematics and Statistics, 6525 N. Sheridan Road, Chicago, IL

60626.The authors are grateful to Isolde Gottschlich who typed parts of this arti-

cle with considerable technical expertise. The �nancial support of the Deutsche

Forschungsgemeinschaft (SFB 475, reduction for complexity in multivariate

data structures) is gratefully acknowledged. The authors are also grateful to an

unknown associate editor and to the editor for their helpful comments, which

led to a substantial improvement of an earlier version of this article.

from both populations if the total sample size has been �xed

has not found much attention in the literature. It is well known

(see, e.g., Staudte and Sheater 1990) that if n1 and n2 denote

the sample sizes from both populations, the power of Welch’s

test is maximized if n1=n2 º µ¡1=2 = ¼1=¼2: A similar ob-

servation was made by Dannenberg, Dette, and Munk (1994)

in the context of testing interval hypotheses of the form H0 :
· =2 [¡¢; ¢]; H1 : · 2 [¡¢; ¢]: However, these results are

“local” in the sense of Chernoff (1953) as they require knowl-

edgeof thepopulationvariancesin order to determinethesample

sizes n1 and n2:
Section2 demonstratesby meansof a simulationstudy that the

loss of power caused by such a misspeci�cation can be substan-

tial.Consequently,a misspeci�cation of µ can yield a substantial

loss in power if the sample sizes are chosen according to the rule

n1=n2 º µ¡1=2: To obtain designs that are less sensitive with

respect to such misspci�cations, we propose the maximization

of the minimumof an appropriatelystandardizedpower function

taken over a certain range for the parameter µ with respect to the

proportion of total observations in the �rst sample. We also give

an explicit formula for the relative proportions for both samples

with respect to the new criterion, and we demonstrate the ease

with which this technique can be applied in practical settings. It

is demonstrated by means of a simulation study that the new de-

signs are robust and ef�cient whenever a range for the unknown

ratio of the population variances can be speci�ed.

Our new methodology is applied to the classical problem of

testing the difference of two normal means and to the important

problem of inference about the ratio of these means useful in

direct bioassays.

2. LOCAL OPTIMAL ALLOCATION OF SAMPLE

SIZES

Let X1; : : : ; Xn1 and Y1; : : : ; Yn2 denote two independent

samples of independentidenticallydistributedobservationssuch

that Xi ¹ N (·1; ¼2
1), i = 1; : : : ; n1; Yj ¹ N (·2; ¼2

2), j =
1; : : : ; n2, and consider the one-sided problem of testing the

hypotheses

H0 : · = ·1 ¡ ·2 µ 0 versus H1 : · > 0: (1)

In a famous article, Welch (1938) suggested the rejection of the

null hypothesis if

·Xn1
¡ ·Yn2r

1

n1

bS2
1 +

1

n2

bS2
2

> t
1¡¬;bf ; (2)

where ·Xn1 ; ·Yn2 denotethesamplemeans, bS2
1 = 1

n1¡1

Pn1

i = 1(Xi¡
·Xn1 )2, bS2

2 = 1
n2¡1

Pn2

i = 1(Yi ¡ ·Yn2 )2 are the common estima-

tors of the populationvariances ¼2
1 , ¼2

2 , respectively, and t
1¡¬;bf
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is the (1 ¡ ¬)-quantile of the t distribution with

bf =

Ã
bS2

1

n1
+

bS2
2

n2

!2

Ã
bS2

1

n2

!2

=(n1 ¡ 1) +

Ã
bS2

2

n2

!2

=(n2 ¡ 1)

(3)

estimated degrees of freedom. It was pointed out by Scheffé

(1970) and Wang (1971) that this test provides a good compro-

mise between tests which should on the one hand be unbiased

and on the other hand be easily implemented. The performance

of a given test is measured by its power function under some al-

ternative hypothesis. It is easy to see that for a �xed sample size

the power of Welch’s test must depend on the relative propor-

tions n1=(n1 + n2) and n2=(n1 + n2). For example, if n1 = 0
or n2 = 0 the power of the test is 0 and it is impossible to test

hypotheses regarding the difference of the population means,

because observations are available only from one population.

However, what is a good choice of the relative sample sizes to

obtain a most ef�cient inference?

Throughout this article we call any speci�cation of the rela-

tive proportion n1=(n1 + n2) of total observations for the �rst

sample an experimental design. The optimal design problem is

to maximize the power of the test with respect to the choice of

n1 for a �xed sample size n1 + n2. Because it is not clear which

alternative should be used for this calculation one usually con-

siders “local” alternatives, very close to the null hypothesis if

the total sample size is large, and for this reason, particularlydif-

�cult to detect. It is well known (see Staudte and Sheater 1990,

p. 180) that for local alternatives of the form

· =
¼1p

n1 + n2
(4)

the asymptotic power function of this test is given by

º(µ) = ©

Ã½
1

w
+

µ

1 ¡ !

¾
¡1=2

¡ u1¡¬

!
; (5)

where µ = ¼2
2=¼2

1 is the ratio of the population variances,

u1¡¬ = ©¡1(1 ¡ ¬) is the quantile of the standard normal

distribution and

lim
n1 ! 1

n2 ! 1

n1

n1 + n2
= w 2 (0; 1) (6)

is asymptotically the relative proportion of total observations in

the �rst sample. It was pointed out by Dette and Munk (1997)

that º(µ) also coincides with the asymptotic power function

of the extension of Welch’s test to the problem of testing the

equivalence hypotheses

H0 : · =2 [¡¢; ¢]; H1 : · 2 [¡¢; ¢] (7)

under contiguous alternatives · = ¢ + ¼1(n1 + n2)¡1=2: A

simple calculation shows that the power º(µ) is maximal if

n1

n1 + n2
º w¤

µ =
1

1 +
p

µ
=

1

1 + ¼2=¼1
; (8)

and we will call w¤

µ the local optimal design for testing the hy-

potheses (1) or (7). The phrase “local” is due to Chernoff (1953)

and used because the optimalallocationto both samples depends

on the unknown parameter µ = ¼2
2=¼2

1 : If some information re-

garding the ratio of populationvariances is available, the power

of Welch’s test can be increased substantially by using the rule

(8). However, the following example shows that in general the

local optimal design is indeed sensitive with respect to misspec-

i�cation of the parameter µ:

Example 1. We have conducted a small simulation study,

where · = 1; ¼2
1 + ¼2

2 = 5, and the “true” ratio µ
1=2
t = ¼2=¼1

varies between 1 and 1/5. We have calculated the power of

Welch’s test (2) with nominal level 5% for the hypotheses (1) for

various designs, which are calculated under the respective as-

sumptions that the ratio is given by µ
1=2
a = 1; 1=3; 1=5: In other

words, if µt == µa the design was calculated under a misspeci�-

cation for the ratio of the populationvariances.The local optimal

designs are obtained by a simple rounding procedure from the

values (n1 + n2) ¢w¤

µ = (n1 + n2) ¢ (1 +
p

µ)¡1=2; which gives

the sample size for the �rst sample. The rejection probabilities

of the test (2) are calculated by 10,000 simulation runs, while

the total sample sizes satisfy n1 + n2 = 25 or n1 + n2 = 50:
Table 1 shows the loss of ef�ciency if a design has been cal-

culated by a misspeci�cation of the parameter µ. The ef�ciency

losses are believedaccurate to the reported precision.The loss of

ef�ciency is remarkably large. For example, if the “true” ratio of

the populationvariances is given by µ
1=2
t = 1; but the local opti-

mal design is found under the assumption that µ
1=2
a = 1=3, then

we obtain for the sample size n1 + n2 = 50 the power 0:581,

while the best design yields power 0:715. This corresponds to a

loss of power of approximately 19% º (0:715 ¡ 0:581)=0:715,

which is the value listed in Table 1. The results indicate that

the optimal allocation rule (8) is rather sensitive with respect

to a misspeci�cation of the unknown ratio of the population

variances. For example, the allocation rule n1 = 19; n2 = 6

(corresponding to the assumption µ
1=2
a = 1=3) yields a loss of

ef�ciency of 21% (µ
1=2
t = 1) and 1% (µ

1=2
t = 1=5) while it

is the best for µt = 1=3: Similarly, the loss of ef�ciency of the

allocation rule n1 = 21 n2 = 4 (corresponding to the assump-

tion µ
1=2
a = 1=5) is approximately 40% (µ

1=2
t = 1) and 7%

(µ
1=2
t = 1=3):
In the following section robust designs will be calculated by a

maximinapproach,whichusesonlythe informationthat the ratio

of the populationstandard deviations lies in the interval [1=5; 1]:
We feel this is the more realistic settingbecausepractitionerswill

rarely be able to give an accurate point estimate for the ratio of

the variances, whereas an accurate interval estimate can usually

be given.

3. ROBUST DESIGNS FOR THE BEHRENS-FISHER

PROBLEM

Note from (5) that the power function of the test (2) increases

with the expression

f(w; µ) =

½
1

w
+

µ

1 ¡ w

¾
¡1

; (9)

and that the local optimal design w¤

µ = 1=(1 + µ1=2) is found

by maximizing f (w; µ) with respect to w for given µ [see the

The American Statistician, May 2004, Vol. 58, No. 2 139



Table 1. Loss of Ef�ciency of Welch’s Test (2) for the Hypotheses (1) for Various Designs and Ratios µt = ¼2
2
=¼2

1
of

Population Variances. The results are based on 10,000 simulation runs.

n1 + n2 = 25 n1 + n2 = 50

µ
1=2

a 1 1/3 1/5 robust 1 1/3 1/5 robust

n1 = 13 n1 = 19 n1 = 21 n1 = 17 n1 = 25 n1 = 37 n1 = 41 n1 = 33

µ
1=2

t
n2 = 12 n2 = 6 n2 = 4 n2 = 8 n2 = 25 n2 = 13 n2 = 9 n2 = 17

1 0% 21% 40% 9% 0.0% 19% 37% 6%

1/3 14% 0% 7% 0% 12% 0.0% 2% 0%

1/5 22% 1% 0% 7% 17% 1.0% 0% 5%

derivation of (8)]. The performance of a particular given design

can be measured by its ef�ciency

eff(w; µ) =
f(w; µ)

maxv f (v; µ)
=

(1 +
p

µ)2

1

w
+

µ

1 ¡ w

: (10)

Roughly speaking 1 ¡ eff(w; µ) measures the loss in power if

µ is the “true” ratio of population variances and the design w
is used instead of the local optimal design w¤

µ, which requires

the knowledge of µ. Note that the ef�ciency varies between 0
and 1 and that a design with ef�ciency close to 1 yields the best

power. For example, if µ = 1 the local optimal design advises

the experimenter to take equal sample sizes in both samples (i.e.,

w¤

1 = 0:5) and this design has ef�ciency eff(0:5; 1) = 1. On the

other hand the design, which takes 82% of the observations in

the �rst sample, has ef�ciency eff(0:82; 1) = 0:59.

In Example 1, we showed that local optimal designs are not

necessarily robust with respect to a misspeci�cation of the un-

known ratio of the populationvariances. For the constructionof

a more robust design, we assume that an interval, say [µL; µU ];
for the unknown population variance can be speci�ed by the

experimenter and determine a design that maximizes the worst

ef�ciency over this interval. It follows that the resulting design

will have reasonable ef�ciencies over the full interval [µL; µU ].
We call a design w¤ standardized maximin optimal if it maxi-

mizes the minimum ef�ciency

g(w) = min
µ2 [µL;µU ]

eff(w; µ) (11)

over the interval [µL; µU ]: This design criterion is similar to the

standardized optimality criteria used by Dette (1997) and Imhof

(2001). Further, the Appendix establishes that for �xed w the

functionµ ! eff(w; µ) is unimodal with at most one maximum

in the interval [µL; µU ] (see Lemma A.1). It therefore follows

that

g(w) = minfeff(w; µL); eff(w; µU )g: (12)

Moreover, Lemma A.2 (see the Appendix) shows that for the

standardized maximin optimal design

w¤ = arg maxw 2 [0;1]g(w)

it follows that eff(w¤; µL) = eff(w¤; µU ): This equality deter-

mines the optimal design as

w¤ =
2 + µL

1=2 + µU
1=2

2(1 + µL
1=2)(1 + µU

1=2)
(13)

for which the minimal ef�ciency is

g(w¤) =

(2 + µL
1=2 + µU

1=2)fµL
1=2(1 + µU

1=2) + µU
1=2(1 + µL

1=2)g
2(1 + µL

1=2)(1 + µU
1=2)(µL

1=2 + µU
1=2)

:

(14)

Example 2. If the experimenter speci�es the interval

(µL
1=2; µU

1=2) = (1=5; 1) for the ratio of the standard de-

viations the standardized maximin optimal design weight is

w¤ = 2=3 and the minimal ef�ciency is g(w¤) = 8=9: This high

value of the minimal value of the design ef�ciency underscores

the remarkable robustness of our robust design. Incidentally, the

corresponding weight is translated into a practical design allo-

cation for the �rst sample by rounding

(n1 + n2) ¢ w¤ = (n1 + n2)2=3

to the nearest integer (as in Table 1). In the fourth columns

(labeled “robust”) Table 1 also contains the loss of ef�ciency

of this robust design for all situations under consideration. For

example, if n1 + n2 = 25 the loss of ef�ciency of the allo-

cation rule n1 = 17; n2 = 8 compared to the best design

is only approximately 9% (µ
1=2
t = 1); 0% (µ

1=2
t = 1=3), and

7% (µ
1=2
r = 1=5): Thus, the new design constructedby the max-

imin approach is quite robust and ef�cient. The results of Table

1 along with additional simulations (not shown for the sake of

brevity) indicate that robust and ef�cient designs are available

if an interval for the unknown ratio of the population variances

can be speci�ed by the experimenter.

Remark 1. We also note that the design problem is symmetric

in the following sense. If w¤

µL;µU
denotes the standardized max-

imin optimal proportion for the �rst sample if the parameter µ is

assumed to be in the interval [µL; µU ]; then the corresponding

quantity for the interval [1=µU ; 1=µL] satis�es

w¤

1=µU ;1=µL
= 1 ¡ w¤

µL;µU
:

It follows that the standardized maximin optimal design for the

interval [1=µU ; 1=µL] can be obtained from the corresponding

design for the interval [µL; µU ] by interchanging the role of the

sample sizes n1 and n2: For this reason the robust designs can

easily be tabulated. Some designs for selected values of µL and

µU are presented in Table 2. Finally, we note that this symmetry

implies that the equal allocation rule w¤ = 1=2 is standardized

maximin optimal for any interval of the form [1=µ0; µ0] where

µ0 > 1:
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Table 2. Standardized Maximin Optimal Designs for Various Intervals [ µL;µU ] for the Unknown Ratio µ = ¼2
2
=¼2

1
of the Popu-

lation Variances. The value w ¤ in the table gives the relative proportion of total observations in the �rst sample.

µL

/
µU 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.760 0.725 0.703 0.686 0.673 0.662 0.652 0.644 0.636 0.630

0.2 0.691 0.668 0.652 0.638 0.627 0.618 0.609 0.602 0.595

0.3 0.646 0.629 0.616 0.605 0.595 0.587 0.580 0.573

0.4 0.613 0.599 0.588 0.579 0.570 0.563 0.556

0.5 0.586 0.575 0.565 0.557 0.549 0.543

0.6 0.563 0.554 0.546 0.538 0.532

0.7 0.544 0.536 0.529 0.522

0.8 0.528 0.521 0.514

0.9 0.513 0.507

1.0 0.5

Example 3. The results derived so far have been derived un-

der the assumption that one-sided hypotheses are tested with

Welch’s approximatet-solution. It follows from Dette and Munk

(1997) that these results are directly applicable to the prob-

lem of testing the equivalence hypotheses H0 : · =2 [¡¢; ¢];
H1 : · 2 [¡¢; ¢], because the asymptotic power function

coincides with that of the one-sided problem.

In principle, a similar analysis could be performed for cases

where simple hypotheses H0 : · = 0; H1 : · == 0 or interval

hypotheses H0 : · 2 [¡¢; ¢]; H1 : · =2 [¡¢; ¢] are of in-

terest. However, our numerical results show that the designs de-

rived for the one-sided problem are also very ef�cient for testing

other hypotheses. By way of illustration, consider the situation

of Example 1 where ¼2
1 + ¼2

2 = 5 and a test with level 5% for

the hypotheses H0 : · = 0; H1 : · == 0 has to be performed.

To demonstrate the application of Remark 1, we consider the

cases where µ
1=2
t = 1; 3; 5 for the true value of the ratio of the

variances, while we assumed µL
1=2 = 1 and µU

1=2 = 5 for the

constructionof the robust design. The optimal proportion for the

�rst sample is now given by w¤ = 1=3 and the simulated loss

of ef�ciency is given in Table 3 for sample sizes n1 + n2 = 25
or 50: We observe a similar picture as for the one-sided case.

The local optimal designs are sensitive with respect to misspec-

i�cation of the unknown ratio of populationvariances, while the

standard maximin optimal designs yield a reasonable power in

all cases under consideration.

4. APPLICATION TO BIOASSAY

One concern of bioassay, or biological assays, is the estima-

tion of the potency of one drug (B) relative to another (A), typi-

cally involving comparing a new drug with a standard. Further,

in contrast with indirect assays, direct assays hold that the nec-

essary concentrations that produce the same therapeutic effect

can be directly measured. In this setting, the relative potency (»)
of drug B to A is the ratio of the respective means, where the

underlying respective distributions are assumed to be Gaussian

A ¹ N (·1; ¼2
1); B ¹ N (·2; ¼2

2); thus, » = ·2=·1: Further

background of direct assays were given by Finney (1978, chap.

2) and Govindarajulu (2000, chap. 2).

Often practitioners are interested in a con�dence interval for

the relative potency, and experimental designs which produce

shorter con�dence intervals are therefore desired. In the case

of independent populations, a standard calculation shows that

the �rst-order approximation for the length of any reasonable

con�dence interval is proportional to the root of the function

g(w; µ; ») =
1

w
+

µ=»2

1 ¡ w
;

and all results of the previous sections are therefore applicable

to this case but with µ replaced by µ=»2: For example, the local

optimal design uses

w¤

µ=» =
1

1 +
p

µ=»
(15)

as the weight for the �rst sample. Similarly, if the experimenter

is able to specify a region, say [µL; µU ] for the quantity µ=»2

the optimal design is given by (13).

Consider for example the situation where the populationvari-

ances are the same, that is, µ = 1; and a con�dence interval is

constructed using Fieller’s theorem (Finney 1978). This interval

Table 3. Loss of Ef�ciency of Welch’s Test of a Simple Hypothesis for Various Designs and Ratios µt = ¼2
2

=¼2
1

of Pop-
ulation Variances. The results are based on 10,000 simulation runs.

n1 + n2 = 25 n1 + n2 = 50

µ
1=2

a 1 3 5 robust 1 3 5 robust

n1 = 12 n1 = 6 n1 = 4 n1 = 8 n1 = 25 n1 = 12 n1 = 8 n1 = 17

µ
1=2

t
n2 = 13 n2 = 19 n2 = 21 n2 = 17 n2 = 25 n2 = 38 n2 = 42 n2 = 33

1 0% 21% 36% 12% 0% 22% 40% 10%

3 24% 0% 3% 5% 15% 0% 4% 2%

5 31% 3% 0% 8% 24% 3% 0% 8%
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Table 4. Loss of Ef�ciency in the Construction of Fieller’s Con�dence
Interval for the Relative Potency for Various Designs and Different Values

of »t = ·2 =·1: The results are based on 10;000 simulation runs.

n1 + n2 = 50

»a 1.0 2.25 4.0 6.25 robust

n1 = 25 n1 = 35 n1 = 40 n1 = 43 n1 = 30

»t n2 = 25 n2 = 15 n2 = 10 n2 = 7 n2 = 20

1.0 0% 7% 23% 41% 1%

2.25 3% 0% 10% 22% 2%

4.0 8% 0% 5% 13% 2%

6.25 11% 0% 2% 8% 4%

is of the form

(»L; »U ) =

0
B@

b» ¡ tbs
·Xn1

n
1

n2
+ b»2 1

n1
¡ g

n2

o1=2

1 ¡ g
;

b» + tbs
·Xn1

n
1

n2
+ b»2 1

n1
¡ g

n2

o1=2

1 ¡ g

1
CA

where g = t2s2=(n1
·X2

n1
); t is the (1 ¡ ¬)-quantile of the t-

distributionwith n1 +n2¡2 degrees of freedom, b» = ·Yn2 = ·Xn1 ,

and ·S2 is the pooled variance estimate. To highlight the bene-

�ts of our robust design strategy, we have performed a small

simulation study to calculate the average length

bL = »U ¡ »L

of this interval for different designs. For this simulation, the

true relative potency »t varies between 1, 2.25, 4, and 6.25, and

for the construction of the locally optimal designs by formula

(15) we again assume ¼2
1 = ¼2

2 = 0:25; (whence µ = 1): The

results are given in Table 4 and show the loss of ef�ciency, if

the relative potency has been misspeci�ed. We observe a strong

dependence on the speci�cation of the relative potency. Thus,

a misspeci�cation of this quantity can produce a substantially

larger con�dence interval. For example, if the true relative po-

tency is »t = 1 but we use a design based on the assumption

»a = 4; the length of the resulting con�dence interval is in-

creased by 23% º (0:605 ¡ 0:493)=0:493. On the other hand,

the robust design given in the table is constructed under the as-

sumption that the true »t lies in the interval [1; 6:25]; and yields

the optimal weight w¤ = 0:607 using formula (13). For the to-

tal sample size n1 + n2 = 50; this weight translates into the

allocation n1 = 30 and n2 = 20; for a total sample size of

n1 + n2 = 50: From Equation (14), this robust design has an ef-

�ciency of at least 95.41% . This fundamentalresult is illustrated

in our simulation study, which shows that the robust design is

indeed both robust to the choice of » and very ef�cient with a

loss of ef�ciency of at most 4% (see Table 4).

5. CONCLUDING REMARKS

This article determines ef�cient and robust designs for

Welch’s approximate t test for testing one-sided hypotheses.

Our method is based on a maximin approach and we have shown

their usefulness and superiority in the classical setting of infer-

ence for the difference of two means. An explicit formula for the

proportions of total observations for both samples is given and

the designscan easilybe implemented if the experimenter is able

to specify a region [µL; µU ] for the unknownratio µ = ¼2
2=¼2

1 of

the populationvariances. It is demonstrated by means of a sim-

ulation study that the derived designs yield to an ef�cient infer-

ence for all µ 2 [µL; µU ]; whenever 0:2 µ µL
1=2 µ µU

1=2 µ 1
(equivalently 1 µ µL

1=2 µ µU
1=2 µ 5): This should encom-

pass most cases of practical interest.An experimentwith a larger

(smaller) ratio of standard deviationsshould never be performed

because the power of the Welch test becomes very small.

We have concentratedon one-sidedhypothesesof the form (1)

for the sake of brevity. However, for the problem of testing the

equivalence hypotheses H0 : · =2 [¡¢; ¢]; H1 : · 2 [¡¢; ¢]
it was shown by Dette and Munk (1997) that the asymptotic

power function of an extension of Welch’s test coincides with

the power function of the test for one-sided hypotheses. As a

consequence the results obtained in this article are applicable

for testing interval hypotheses by Welch’s approximate t solu-

tion introducedby Dannenberg, Dette, and Munk (1994). More-

over, it is demonstrated that the designs derived in Section 3

also provide a robust and ef�cient allocation for the problem of

testing simple hypotheses. For these reasons we recommend to

use these designs for the Behrens-Fisher problem of testing the

difference of two means whenever an interval for the ratio of the

population variances can be speci�ed.

The results are also applicable for the classical problem of

bioassaywhere thegoal of the experiment is the estimationof the

potency of one drug relative to another. For this problem, robust

and ef�cient designs can be obtained from the results of this

article whenever the experimenter is able to specify an interval

for the ratio µ=»2 where » is the unknown relative potency and

µ the ratio of the population variances.

APPENDIX

Lemma A.1. For �xed w the function µ ! eff(w; µ) de�ned

in (10) is unimodal with at most one maximum in the interval

[µL; µU ]:

Proof. Recall the de�nition of the ef�ciency in (10). A

straightforward calculation shows that

@

@eµ
¡
log(eff(w; eµ2)

¢
= 2

(eµ + 1)w ¡ 1

(1 + eµ)(w ¡ 1 ¡ weµ)
;

which vanishes only at the point eµ = (1 ¡ w)=w: A similar

calculation of the second derivative yields

@2

@2eµ log(eff(w; eµ2)

¯̄
¯̄eµ=

(1 ¡ w)
w

=
2w3

(w ¡ 1)(w + (1 ¡ w))2
< 0:

Consequently it follows that the function eff(w; eµ) has at most

one extremum in the interval [µL; µU ]; which is a maximum.

Lemma A.2. If w¤

µL;µU
denotes the standardizedmaximin op-

timal design, then

eff(w¤

µL;µU
; µL) = eff(w¤

µl;µU
µU):
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Proof. We can split the maximization of the right-hand side

of (12) in the maximization over the sets

M< = fw 2 [0; 1] j eff(w; µL) < eff(w; µU)g ;

M> = fw 2 [0; 1] j eff(w; µL) > eff(w; µU)g ;

M = = fw 2 [0; 1] j eff(w; µL) = eff(w; µU)g :

Now assume that w¤

µL;µU
2 M<: In this case we obtain

w¤

µL;µU
= 1=(1 +

p
µL) and by the de�nition of M< the in-

equality

eff(
1

1 +
p

µL
; µL; ) < eff(

1

1 +
p

µL
; µU):

But this inequality is equivalent to

(
p

µL ¡ p
µU )2 < 0;

which yieldsa contradiction.A similar argument for the set M>

shows that the maximum is attained in M= ; which completes

the proof.

[Received August 2003. Revised February 2004.]
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