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Abstract 

The main dmwback of the optimal design approach is that it assumes the statistical model is 
known. To overcome this problem, a new approach to reduce the dependency on the assumed model 
is proposed. The approach takes into account the model uncertainty by incorporating the bias in the 
design criterion and the ability to lest for lack-of-fit. Several new designs are derived and compared 
to the alternatives available from the literature. 
102004 Elsevier B.V. All rights reserved. 
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1. Introduction 

The assumption that underlies most research work in optimal experimental design is that 
the proposed model adequately describes the response of interest. It is unlikely however 
that the experimenter is completely certain that the model will be correct and this should be 
reflected in the experimental design. Instead of searching for the optimal design to estimate 
the stated model several approaches have been proposed in the literature to account for 
model uncertainty. The resulting experimental designs are often referred to as model-robust 

• Corresponding author. Tel.: +321-632-6964; tax: +321-632-6732. 
E-mail address:peter.goos@eeon.kuleuven.ac.be (peter Goos). 


I Also for correspondence. 


0167-94731$-sce front malterO 2004 Elsevier B.V.AlI rights reserved. 
doi: 1O.1016fj.csda.2004.05.032 

mailto:address:peter.goos@eeon.kuleuven.ac.be
www.clsevier.com/locatelcsda
http:www.sclencedirect.com


202 Peter GOO$ et al. I Computational Statistics & Data Analysis 49 (2005) 20/ - 2/6 

designs. An overview of a considerable part of the work on model robust designs is given in 
Chang and Non (1996). They point out that the practical value ofthe results they review is 
mainly in alerting the experimenter to the dangers of ignoring the approximate nature ofany 
assumed model and in providing some insight concerning what features an experimental 
design should possess in order to be robust against departures from an assumed model 
while allowing a good fit of the assumed model. During the last 15 years, Dette (1990, 
1991, 1992, 1993, 1994, 1995), Dette et al. (1995), Dette and Studden (1995), Fang and 
Wiens (2003), Heo et a!. (2001), Liu and Wiens (I 997),Wiens (1992, 1994, 1996, 1998, 
2000) and Wiens and Zhou (1996, 1997) have done a considerable amount ofwork in this 
area, thereby extending the seminal work by Huber (l975), Pesotchinsky (1982), Sacks and 
Ylvisaker (1984) and Wiens (1990). A recurring theme is that uniform or equispaced designs 
perform well in terms ofmodel-robustness when a Bayesian approach is adopted, when the 
maximum bias is to be minimized or when the minimum power ofthe lack-of-fit test is to 
be maximized. In the present paper, we will concentrate on practical design problems in 
which the number ofobservations available is small,just like DuMouchel and Jones (1994), 
who propose a Bayesian approach involving so-called primary and potential model terms. 
In contrast with some of the above-mentioned work, we also assume that the estimated 
model and the true but unknown model are linear regression models, that the experimental 
errors are homogeneous and' uncorrelated, and that the model is estimated using ordinary 
least squares, This is the problem industrial statisticians most often consider. 

2. Model-robust versus model-sensltive designs 

In a model-robust approach, one looks for designs that yield reasonable results for the 
true model even if the postulated model is different. The pioneering work in this area is 
from Box and Draper (1959). They assume that the true model is composed of a primary 
model-the one that will eventually be estimated-plus some potential terms. The design 
strategy they propose minimizes the integrated mean squared error over tbe region of in­
terest. This criterion can be decomposed into the sum of a bias component and a variance 
component. The problem with this and similar criteria is that the optimal design will depend 
on the parameters of the potential terms. Several authors who have worked on the problem 
of balancing precision and bias have proposed solutions to overcome this dependency on 
the parameters. Welch (1983) for instance minimized the average variance and the average 
bias in the extreme points of the design region for maximal parameter values, whereas 
Montepiedra and Fedorov (1997) develop a method to find designs that strike a balance 
between the variance and the bias. DuMouchel and Jones (1994) used a Bayesian approach 
to obtain designs that are less sensitive to tbe model assumption. The authors claim that their 
criterion leads to designs that are more resistant to the bias caused by the potential terms, 
and at the same time yields precise estimates of the primary terms. Inspired by the papers 
ofBox and Draper (1959) and DuMouchel and Jones (1994). Kobilinsky (1998) developed 
a design criterion combining bias and variance properties in a more explicit way. 

In contrast with the model-robust approach. model-sensitive design approaches lead to 
designs that facilitate the improvement of the model by detecting lack-of-fit. Examples of 
such approaches can be found in Atkinson (1972), Atkinson and Cox (1974) and Atkinson 



203 PeterGoos et af.IComplltaliona/ Statistics &: Data Analysis 49 (2005) 101 -1/6 

and Fedorov (1975a, b). These authors searched for designs that were good in detecting 
lack-of-fit by maximizing the dispersion matrix somehow. Jones and Mitchell (1978) elab­
orated on this idea by maximizing the minimal or average noncentrality parameter over a 
region ofpossible values for the potential parameters. Studden (1982) combined the detec­
tion of lack-of-fit with a precise estimation of the primary terms. This combined approach 
was also used in Atkinson and Donev (1992). 

According to Chang and Notz (1996), a good model-robust design should (i) allow the 
experimenter to fit the assumed model, (ii) allow the detection ofmodel inadequacy, and (iii) 
allow reasonable efficient inferences concerning the assumed model when it is adequate. 
The purpose ofthis paper is to construct experimental designs that meet these requirements 
and that lead to a smalI bias between the estimated model and the true model. A first attempt 
to combine bias and lack-offit aspects is given by DeFeo and Myers (J 992) who minimize 
bias and at the same time maximize the power of the lack-of-fit test ofthe potential terms. 
They show that a rotated design has the same bias properties as the initial design and use this 
result to maximize the power ofthe lack-of-fit test. In this paper we develop two new design 
criteria that take into account both model-robust and model-sensitive aspects, combining 
efficiency in estimating the primary terms, protection against bias caused by the potential 
terms and ability to test for lack-of-fit and thereby increasing the knowledge on the true 
model. In Section 3 we will introduce the notation and describe some existing approaches. 
In Section 4 we develop our generalized criteria and in Section 5 we illustrate their use with 
some theoretical examples. Section 6 contains our conclusion. 

3. The model 

We assume there exists a relationship between the expected response and the experimental 
factors Xl, X2 • •••• Xi:. The model that wi11 be fitted is 

(I) 

with x1 a p-dimensional vector of powers and products of the factors and 111 the 
p-dimensional vector ofunknown parameters. We further assume that the expected response 
was possibly misspecified and that the true model is given by 

Y =x'lI +e= XlIII + x2112 + e='1(X) + e, (2) 

with X2 the q-dimensional vector containing powers and products ofthe factors not included 
in the fitted model, x' =[xI xz] and II' = [III 112]. We will refer to XlIII as the primary terms 
and to x2112 as the potential terms. Note that it is implicitly assumed that there are 2q 

possible models ranging from the model with only the primary terms to the full model 
containing aJl primary and potential terms, Also, it is interesting to point out that simply 
estimating the more complicated model (2) is in practice often impossible because a large 
number of possibly important regressors- would require an experiment involving a large 
number of observations. This makes that 'researchers often stick to the simpler primary 
model (I). To simplify the notation in the sequel of the paper, we will assume that the 
model has been reparametrized in terms ofthe orthonormal polynomials with respect to a 
measure Jl on the design region. In the examples of Sections 5 and 6, we will use the uniform 
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measure on the design region because we assume that all the points in the design region are 
equally important. The orthonormalization ensures that the effects are well separable and • 
independent so that a simple prior distribution on the potential terms can be used. 

3.1. Model-robust design strategies 

Box and Draper (1959) were the first to investigate the effect ofmodel misspecification. 
They introduced the integrated mean squared error (IMSE) with respect to a measure J1. on 
the design region. If we denote the fitted response value for factor settings XI under the 
primary model (I) by Y(XI), the IMSE can be defined as 

IMSE=EpE,[I1(X)- Y(XI)P 

= EJlEdl1(x) - Et[y(xJ )]f+EpE£[EtlY(XI)] - Y(XI )]2 

which consists of the expected squared bias and the expected prediction variance. If we 
denote by X I the n x p model matrix forthe primary terms and by X2 the n x q model matrix 
for the potential terms, we have that Y(X\) =xI (X;X\)-IX; Y and E,[Y]:= XI PI + X2P2. 
As a result, 

IMSE=Ep[xIPI + X2P2 - x; {Xl XI )-1 Xl (XI PI + X2P2)]2 

+ EJl[x;(X1Xt>-lxl~1 
= E/1[x2P2 - xj(X'IXI)-IX;X2P212 + Ep[X;(X;Xl)-lx,~]. 

In this expression, (Xl XI )-1 Xl X2 is the so-called alias matrix. We will denote it by A in 
the sequel ofthe paper. Now, denoting J1.ij =E/t(xjxj) and using the well-known result that 

Ep[xJ (X) XI )-lxtl=Epltrace{xl (XI XI )-lxll] = E/1[trace{XI xi (XI x, )-'ll 
=trace[Jtll (Xjxl )-1]. 

we obtain 

IMSE=E/irX2P2 - xI A/h]2 + ~.tr~ce[J1.11 (XI XI )-1] 

= P2Epf{x2": XI A)'(x2 - xiA)lP2 + a2 tracer/ill (Xl Xl )-11 

P2[A'J1.IIA - A'flI2 - J1.21 A + J1.2'2JP2 + ~trace[J1.11 (X;XI)-l]. 

As we have assumed orthonormal polynomials, we have that fill = Ip, fll2 = Opxq. J1.21 = 
Oq x p and J1.22 :;::: Iq • As a consequence, 

lMSE = P2rA'A + Iq1P2 +~ trace(X;XI)-I. 

From this result, Box and Draper (I 959) concluded that bias can be minimized by looking 
for designs for which that A =Opxq. In general however the design that minimizes IMSE 
will depend on the values offJ2. To cope with this dependence, Kobilinsky (1998) suggested 
to put a prior distribution on the potential parameters. As it is unlikely that these terms are 
large, the following distribution was considered to be appropriate: 

Ih ~ JII'(O, ~~Iq). 

http:trace[J1.11
http:tr~ce[J1.11
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Be:ause X2 is orthonormalized. it is reasonable to assume that all elements in Ih have equal 
variances and that they are uncorrelated with each other. Under this assumption, we obtain 
that 

Ep[lMSEJ=EplP2[A'A + IqJPa + a2trace(X;XI)-I] 

:::= trace(A'A~a2Iq + ~a2Iq) + a2trace(X~XJ}-1 
= ~a2 trace(A'A + Iq} + a2 trace(X;XI)-I. 

It is clear that -r2 = 0 indicates that the primary model is the true model. In that case, 
minimization of the expected IMSE will lead to the minimization oftrace(X~X!)-l and 
thus to an A-optimal design for the primary model (1). 

Based on a similar prior distribution ofthe potential terms, DuMouchel and Jones (1994) 
proposed a Bayesian D-optimality criterion to find designs that yield precise estimates for 
the primary terms and give some protection against the existence of the potential terms. As 
the posterior covariance matrix of iJ is 

K)-I
cov<iJ) = a2 (X'X + t 2 

with X' = [Xl X2]and 

K:::::: (OpxP Opx q ) 

Oqxp lq 


they proposed to maximize the following determinant: 

1 I' KI .(J2 X X+ 

This criterion has the clear advantage that the information matrix for the full model (2), 
i.e. X'X, can be singular without causing problems. Therefore it is possible to use this 
criterion for design problems in which p ~ n < p +q. that is in cases where the number of 
observations n available is insufficient to estimate the full model. Such small experiments 
are common in industry. 

The choice of t 2 is of course an arbitrary one. Kobilinsky (1998) suggests -r2 = 1/q 
so that the global effect of the q potential terms is of the same order of magnitude as the 
residual error. DuMouchel and lones (1994) suggest to take -c2 = I so that the effect of any 
ofthe potential terms is not larger than the residual standard error. They use a less stringent 
orthogonalization procedure which only orthogonalizes the potential terms with respect to 
the primary terms. The primary terms are not orthogonalized relative to each other, nor are 
the potential terms. The orthononnalization used in this paper leads to simpler mathematical 
derivations. 

The approaches ofBox and Draper (1959), DuMouchel and Jones (1994) and Kobilinsky 
(1998) aim at finding designs that yield precise estimates of the primary terms and ensure 
that predictions are close to the expected response. They do not explicitly consider the 
possibility of performing a lack-of-fit test and therefore do not provide information on 
the appropriateness of the primary model. In the next section we consider some existing 
approaches to deal with this discrimination problem. 
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3.2. Model-sensitive design strategies 

An approach which takes into account both the experimental effort for determining which 
model is true and the effort for precise estimation ofthe parameters is given by Atkinson and 
Donev (1992). They proposed to combine the D-optimality criterion for the primary model 
and the Ds-optimality criterion for the potential terms. The resulting criterion is given by 

IX , I-eel ' , , I' }max -logIXIX,I+-- og!XlX2-X2XI(X1Xtl- XI X21 •{ p q' 

where a E [0. 1] represents the belief in the primary model (1). When IX. = I, this criterion 
reduces to the D-optimality criterion for the primary model, whereas for IX 0 it becomes 
the Ds~optimality criterion for the potential model parameters /12. When IX p/(p + q), 
the combined criterion leads to D-optimal designs for the full model (2). 

Note that the Ds-optimality criterion for the potential terms is related to the noncentrality 
parameter 

t5 _ J;rX2X2 - X2X\(XiXl)-IXiX2]/12 
- 112 (3) 

to test for lack-of-fit in the 'direction of the potential terms. Therefore, it is likely that 
the power of the lack-of-fit test will increase with decreasing IX. The matrix X2X2 ­
X2XI (XI Xl)-l XI X2 is well known in the literature on model-sensitive designs. It is 
usually referred to as the dispersion matrix. In the sequel, of this paper, we will denote 
it by L. 

4. A combined approach 

The advantages of the approaches described in the previous section will be combined in 
a flexible criterion that includes three important aspects: precise estimation of the primary 
model, minimization of the bias caused by the potential terms and possibility to test for 
lack-of-fit. 

The criterion of Kobilinsky (1998) that was derived in the previous section 

min{~~ trace (A'A + Iq) + a2 trace(X; Xl)-l} 

takes into account precision and bias but not Iack-of-fit. As this criterion was derived by 
computing the expected IMSE over the prior distribution of potential terms, it is natural 
to apply the same idea to the lack-of-fit term. As the noncentrality parameter also depends 
on the values of /12, we will maximize the expected noncentrality parameter over the prior 
distribution. The expected noncentrality parameter can be computed as 

E,[b]=E, [/1;IX;X2 -X2Xl~IXlrIXjX2}/12] 

=~ trace [X;X2 - X2XI(XjX\)-IXjX21 


= ~ trace[1:']. 
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To combine the three aspects in one criterion we specify weights 0:2 and 0:3 to attach more 
or less importance on the different properties. A possible criterion is then given by 

mm. {I- trace(X.XI)- I - -0:2 trace(L) + -0:3 trace (A' A + lq) } . 
p q q 

Similarly, the criterion 

0: I IX' I I - 0: I' , , I, }max p og IXI + -q- oglX2X2 -X2Xl{XIXI)- XIX21{ 

ofAtkinson and Donev (1992), which takes into account precision and lack-of-fit, can be 
augmented with a term that represents the bias. As this criterion deals with determinants, a 
natural extension is given by 

min {.!.IOg I (XI XI)-'I + /X2 log IL-II + (X3 log IA'A + Iq I} . 
p q q 

Because these criteria do not allow for singular design matrices for the full model, we can 
use the idea of DuMouchel and Jones (1994) to allow for smaller designs and generalize 
the previous criteria to the following generalized A- and D-optimaJity criteria: 

. {I _1!X2 ( Iq) 0:3 }OA : mm ptrace{XtXI) - q trace L + ,2 + q trace{A' A + Iq) 

and 

OD: min {.; 10gl(XtXI)-I, + :210gl(L+ :~) -II + ~ 10glA'A + Iql}. 

It is easy to see that these criteria generalize those proposed by Atkinson and Donev (1992), 
DuMouchel and Jones (1994) and KobiIinsky (1998) as well as the ordinary D- and A­
optimality criteria. For 0:2 =0:3 = 0 the GO-optimality criterion produces the D-optimal 
design for the primary model. We will refer to this design as DI-optimal in the sequel. For 
0:3 0.1% =q Ip and ,2 =00, we obtain the D-optimal design for the full model, denoted 
by Dfu\l. For /X3 = 0,0:2 = qI p and finite values for ~, we find the Bayesian D-optimal 
designs introduced by DuMouchel and Jones (1994). This is because 

Ix'x + ~I= IX. XtI/X;X2 + :~.-:- X;X, (XI XI )-1 Xi x+ 

5. Illustrations 

In this section, we illustrate the use ofthe GD-optimaJity criterion in a number of simple 
experimental situations. For an application to the five component mixture experiment de­
scribed in Snee (1981) and revisited in DuMouchel and Jones (1994), we refer the interested 
reader to Ooos et at. (2002). The GA-optimality criterion in general leads to different de­
signs but to similar results. The designs here were obtained with a point exchange algorithm. 
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A list ofcandidate design points has to be provided as an input to the algorithm, the first part 
of which is devoted to their orthonormalization. The starting design was partly generated 
in a random fashion and completed by adding those points from the list of candidates that 
had the largest prediction variance for the fitted model. Including the nonrandom part in the 
generation of the starting design led to experimental designs that were consistently better 
than those obtained using a full random starting design. As in the algorithm of Fedorov 
(1972), the starting design was improved by considering exchanges of design points with 
candidate points and carrying out the best exchange each time. The KL-exchange idea of 
Atkinson and Oonev (1989) was implemented to speed up the algorithm. Finally, in order 
to avoid getting stuck in a local optimum, this procedure was repeated 100 times for each 
design problem considered. For the first design problem, the GO-designs are compared to 
an equidistant design because, in the case of one explanatory variable, this design option 
is an easy and an effective way to reduce the bias. It should also be mentioned that the 
GO-optimal designs discussed below are notjust optimal for the !X2- and a)-values reported 
but also in their neighborhood. To avoid the GO-criterion breaking down when the number 
of observations n is smaller than the number of parameters in the full model, p + q, we 
used -r2 = 1 as was recommended by OuMouchel and Jones (1994). When n ~ p + q, we 
used -r2 00. 

5.1. One explanatory variable 

5.1.1. GD-optimal designs 
Firstly, assume that the primary model consists ofp =3 tenns, Po +PIX +P2x2, and that 

there is q =1 potential term, p]xl.As a result, 111 =[Po PI P2l' and 112 =[p)J Also, assume 
that n = 8 and, because n ~ p + q, -r2 00. By varying the values ofa2 and a] we obtain 
several designs. The extreme ones are displayed in Fig. I. The designs were computed 
using a grid of21 equidistant points on [-1, +IJ. The values of the different determinants 
in the GO-optimality criterion are given in Fig. I as well. DXl represents IXIXII-lip, the 
measure used for the precision of the primary terms, OIof = ILI-Ilq provides an idea of 
the ability to detect lack-of-fit and Obias = lA'A + Iq Illq represents the degree of bias. 
These measures were defined such that the smaller the value obtained, the better the design 
performs with respect to this criterion. Notice also that the minimum value ofObias is one. 
It is also useful to mention that, in cases where alternative GD-optimal designs were found, 
we have displayed the most symmetric one. 

For a2 =a] =0, the D-optimal design for the primary model was obtained. This design 
is displayed in Panel I of Fig. I. When either a2 or a3 is increased, different designs are 
obtained. For example, choosing a large value for a3, e.g. 0:) 10, produces the design in 
Panel 2. This design leads to a small bias, as indicated by the Obias-value that is close to 
one. Choosing !X2 =q / p i and al =0 leads to the O-optimal design for the full model 
(see Panel 3). The Olof-value shows that this design allows a good detection of lack-of-fit 
at the expense of the precision. Compared to the O-optimal design for the primary model, 
the design in Panel 3 will lead to a much smaller bias. This implies that an increased power 
for detecting lack-of-fit is to some extent related to a smaller bias. Further increasing (;(2 

to one allows an even better detection ofthe lack-oC-fit and also leads to a slightly smaller 
bias (see Panel 4). Choosing a2 (;(l I or larger values for (;(2 and (;(3 produces a design 
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0:2 = 0,0:3 = 01. 2.=> D1-optimal. 

/I3 , 
• ••••••••••• •• 0 •• 

.1 0 ·1 0 

ir2 = !l. ~ 1,0:3 = 03. 
=> Dfull-oPtimal. 

1/.0, 
·1 .0 1 

ir2 = 1 ,0:3 = 0 ir2 = I, 0:3 = 14. 5.
=> good LOF => good bias & LOF 

, 3 3
1/ " 
•••• 0 ••••••••• • 0 ••••••• 

·1 o 1 ·1 o 1 

Fig. I. GD-oplimal designs for several values of«'2 and 0(3. and for -c2 '" 00. 

that is good for detecting lack·of-fit and that leads to a limited amount of bias (see Panel 
5). Introducing finite values for t 2 creates no new designs for this example. Probably, this 
is due to the fact that n > p + q. 

The average squared prediction variance and average squared bias for an arbitrary value of 
Ih are given in Table I . The value chosen is 113 =1. The table also contains the noncentrality 
parameter () for the lack-of-fit test. The table shows thatthe loss ofprecision in the estimation 
ofthe primary model is compensated by substantial reductions in the bias and by the ability 
to test for lack-of-fit. Table 1 also shows that choosing positive values for both !X2 and 
ex3 (design option 5) leads to a design that performs excellently with respect to both bias 
(1.0052) and detection oflack-of-fit (large (j). Using a positive!X2 and setting !X) =0 (design 
options 3 and 4) provides a design that allows a good detection of the lack-of-fit (large 15) 
but it also leads to a substantial reduction in the bias (considerably smaller than the value 
of 2.4457 for design option 1). Using a positive ex3 and setting !X2 =0 (design option 2) 
leads to a small bias (1.0004), but the resulting design does not perform that well as to the 
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Table I 
Bias, Vlll'iance and lack-of-fil measures 

Design Bias1 AvgVlll' II p-value fur 10f 

[ 2.4457 0.1345 
2 1.0004 0.1652 4.0774 0.0740 
3 1.5370 0.[130 14.1928 0.0114 
4 1.4556 0.1313 [5.1686 0.01O[ 
5 1.0052 0.1562 16.2521 0.0089 

detection of the lack-of-fit (small b). As a result, designs that perfonn well with respect to 
lack-of-fit detection also perfonn reasonably well with respect to the bias, but the opposite is 
not necessarily true. DuMouchel and Jones (1994) point out that an idea of the significance 
of the lack-of-fit test can be obtained by assuming that the expectation of the F-statistic 

F = (SSE(primary model) - SSE(full»/dl , 

SSE(full)/(n - d2) 


with SSE(M) the sum of squared errorS of model M and dl and d'}. the degrees of freedom 
for the test, is equal to 

F ~ E«SSE(primary model) - SSE(full))/d[) = ril + bril/dl = I b 
.< E(SSE(full)/d2) . q2 + d, ' 

where /j is the noncentrality parameter introduced in (3). The number £it is equal to q ifit is 
possible to test the full model, whereas d2 == n-total number of independent parameters in 
the full model. The p-values obtained using the Frstatistic are displayed in the last column 
ofTable ]. It is clear than choosing a positive value for (X2, as in design options 3, 4 and 5, 
leads to small p-values, indicating that a powerfullack-of-fit test can be carried out if any 
of these designs is used. 

5.1.2. Comparison to equidistant design 
A recurring theme in the literature on model-robust designs is that equidistant or unifonn 

designs perfonn well in tenns of bias reduction and protection against lack-of-fit. For the 
present design region and n =8, such a design would have observations at ± I, ±O.7143, 
±0.4286 and ±O.l429. In Table 2, the perfonnance with respect to precision (DXl), lack­
of-fit (Dlot) and bias (Dbias) ofthe equidistant design is compared to that ofthe five designs 
in Fig. I. The perfonnances of the six design options displayed in the table are relative with 
respect to design options ], 5 and 2 because these are the best designs with respect to 
precision, lack-of-fit and bias, respectively. The equidistant design performs quite well with 
respect to bias, but it does not allow a very good detection oflack-of-fit. Overall, the design 
displayed in Panel 5 of Fig. 1 seems to be a better choice, as this design perfonns better 
with respect to bias and lack-of-fit, while it is only slightly worse in tenns of precision. 

The equidistant design is easy to construct in the case of a single experimental variable. 
When more than one variable is involved in an experiment and the number of observations 
available is small, it becomes much more difficult to construct these type of designs. This of 
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Table 2 

Perfonnance of the equidistant design compared to the five designs in Fig. I. 


Design DXl Olaf Dbias 

100.00% 36.49% 
2 67.37% 25.07% 100.00% 
3 87.92% 87.25% 58.17% 
4 85.46% 93.19% 61.59% 
5 68.95% 100.00"10 98.16% 
Equidisl 75.20% 66.95% 83.28% 

course limits their attractiveness. For the next examples, some ofwhich have a constrained 
design region, we will not discuss the equidistant design explicitly anymore. It can however 
be seen that some of the designs produced by the approach presented in this paper provide 
a good coverage of the entire design region. 

5.2. Two dimensions 

As another illustration, consider the two-dimensional problem where the primary model 
consists of p=4 terms, that is fJo+ {JIXl +{J2X2+{J12Xl X2. and the full model has q=2 extra 
potential terms: (JIIXr + th.2X~' The design region considered is a 5 x 5 grid on [-I, +1]2. 

For n = 5, we found the three designs displayed in Fig. 2. The first design is aD-optimal 
design for the primary model. The second design is obtained as soon as the values of ct2 

and/or !X3 become noticeably larger than zero. The design in Panel 3 is obtained for larger 
values of !X2 and IX3. The design in Panel 2 of Fig. 2 was also found by DuMouchel and 
Jones (1994) and supports the common practice ofadding center points to a design in order 
to carry out a lack-of-fit test. 

As n < p +q in this example, a finite ,-value had to be used to obtain a nonsingular dis­
persion matrix L. For the same reason, Dlofwill not exist for the designs shown. Therefore, 
Dloft-values that are defined as [L + Iq /r21-1/q will be reported instead ofthe Dlof-values 
defined earlier. The results reported were obtained for t = I. The same designs can also be 
found for other values of ,. 

For n =8 and r2 =00, we obtain a larger number ofdifferent designs. The most important 
ones are represented in Fig. 3. Panel I shows a duplicated 22 factorial design, which is the 0,­
optimal 8-point design for the primary model. When IX) is increased, this design gradually 
changes into a 22 factorial design with four center points (see Panel 3). The design obtained 
for IX) =2 covers the entire design region very well and is displayed in Panel 2 of Fig. 3. 
When ct2 is increased, most design points move away from the cornerpoints. This allows the 
lack-of-fit to be tested and the bias to be reduced to some extent. For a good performance on 
both criteria, it is necessary to choose positive values for both 0:2 and IX). This is illustrated 
in the Panels 6 and 7 ofFig. 3. Introducing finite values for ,2 does not lead to new designs 
in this example. 
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1. 0:2 = 0:3 = 0 :::} n1-optimal 2. 0:2 = a3 = 0.1 
DXl 0.1051 DX1 0.1182 

DloiT DIoiT 0.314.0 
1Dbias 1.9640 Dbiaa 1.424.3I 
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Fig. 2. GD-optimal S-point designs for severnl values of!X2 and 0:3. and for i2 = I. 

5.3. A constrained design region 

We reconsider the second example ofDuMouchel and Jones (1994) with two constrained 
variables. In the example, XI + X2 ~ 1 so that the set of candidate points only contains 15 
points on a triangle. The primary model is the full quadratic model in the two variables, so 
that p =6. The full model includes q = 4 potential cubic terms: xf. xfXl, xl xi. x~. The 
number of observations n equals nine. As n < p + q, a finite -r-value had to be used. The 
results for -r = I are displayed in Fig. 4.. 

From Panel I in Fig. 4, it can be seen that the Dl-optimal design has minimum support, 
i.e. the number of distinct design points 'Of the design is equal to the number ofparameters 
in the primary model. When 0:2 and/or 0:3 are increased, the number ofdistinct design points 
is increased so that the bias is substantially decreased and the ability to test for lack-or-fit is 
substantially increased. As in the previous example, it is important to select positive values 
for (X2 and 0:3 for a good performance on both criteria. Note that, when (X2 and/or 0:3 are 
large, then the GD-optimal designs contain nine distinct design points, as can be seen in the 
Panels 2, 3 and 4 of Fig. 4. 
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1. CY2 =0:3 = 0 2. 0:2 = 0,0:3 =2 3. 0:2 =0, 0:3 =5 
=> Dl-<>ptimal => small bias => minimal bias 

e, -,- e 
Lre; re + e --: 
rl-e-l, 
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4. 

5. 	 CY2 = 10,0:3 = 0 6 0:2=0:3=5 7 0:2 =5,0:3 = 10 
=> good w.r.t. LOF => good w.r.t. bias & LOF => good w.r.t. bias & LOF 

Fig. 3. GO-optimal 8-point designs for several values of (X2 and (X3. and r'- := 00. 

6. Conclusions 

In this paper, we have derived a generalization ofseveral existing design criteria in order 
to take into account possible misspecification ofthe model when designing an experiment. 
Traditionally, the optimal design approach assumes that the specified model is known_ In 
most applications however, the model is unknown. The design criteria presented are the first 
to take into account the potential bias from the unknown true model as well as the power 
of a lack-of-fit test. Several simple examples are used to illustrate the properties of the 
designs produced by the new criteria. The examples show that the new design criteria lead 
to designs that perform well with respect to bias and with respect to the detection of lack-of­
fit, while maintaining a reasonable estimation precision for the assumed model. Based on 
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1. a2=a3=0 2. a2 =0, a3 =5 
=> Dl-optimal => minimal bias 

0.0875 
1.0000 
1.3777 

3. 	 0:2=~=i,0:3=0 4. 0:2 =0:3 2: 0.25 
=> good w.r.t. LOF => good w.r.t. bias & LOF 

Fig. 4. GD-optimal designs for several values of112 and Il]. T =1, 

our experience with the design criteria'"we would recommend trying several values for 0(2 

and O() and evaluating the resulting designs with respect to precision, detection oflack-of-fit 
and bias. For the instances discussed in this paper and for the practical application in Goos 
et al. (2002), (X2- and (X3-values of 5 to lO led to a reasonable trade-off between these three 
objectives. In general, the choice of (X2 and (X) is however fairly subjective. 

The GD-optimality criterion presented here was successfully embedded in a two-stage 
approach in Ruggoo and Vandebroek (2003). They use a positive (X2-value and (X3 =0 for 
computing a first stage design. In doing so, they neglect bias in the first stage and concentrate 
a substantial amount ofexperimental effort on the detection ofdeviations from the assumed 
model. In the second stage, (X2 is set to zero and a positive 0(3 is used to minimize the bias 
from the unknown true model after all the data have been collected. 
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