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Abstract: An expression for the second-order approximation to the kurtosis asso-

ciated with the least squares estimate of an individual parameter in a nonlinear

regression model is derived, and connections between this and various other mea-

sures of curvature are made. Furthermore a means of predicting the reliability

of the commonly-used Wald confidence intervals for individual model parameters,

based on measures of skewness and kurtosis, is developed. Numerous examples

illustrating the theoretical results are provided.
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1. Introduction

There has been considerable interest over the past twenty years in devel-
oping measures of curvature for nonlinear regression models which in some way
quantify the deviation of the model from linearity. Specifically, in a landmark
paper in 1980, Bates and Watts built on the seminal work of Beale (1960) and in-
troduced relative intrinsic and parameter-effects curvatures which provide global
measures of the nonlinearity of the model. However these measures are not al-
ways helpful when the individual parameters in the model are of interest (see
e.g., Cook and Witmer (1985)) and as a consequence a number of researchers
have developed measures of curvature which are specifically associated with the
individual parameters. In particular Ratkowsky (1983) suggested examining the
skewness and kurtosis of the least squares estimates of the parameters by means
of simulation and Hougaard (1985) reinforced this idea by deriving a formula for
the second-order approximation to skewness. Further Cook and Goldberg (1986)
and Hamilton (1986) extended the ideas of Bates and Watts (1980) to accommo-
date individual parameters, while Clarke (1987) introduced a marginal curvature
measure derived from the second-order approximation to the profile likelihood.
The list seems rather daunting and the curvature measures diverse and uncon-
nected. In fact Clarke (1987), and more recently Kang and Rawlings (1998), have
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identified certain relationships between the measures, but these connections are
limited.

The usefulness of measures of curvature for individual model parameters
can best be gauged by how well the measures predict the coincidence between
the Wald and the likelihood-based confidence intervals. Ratkowsky (1983, 1990)
provided rules of thumb relating to the closeness-to-normality of the individual
parameter estimates, and thus to the accuracy of the Wald intervals, which are
based on the skewness and kurtosis of the parameter estimates obtained by sim-
ulation and which are supported by a wealth of practical experience. Addition-
ally Cook and Goldberg (1986) suggested a connection between their individual
parameter-effects curvature measure and the reliability of the Wald confidence
intervals but this claim has to a greater extent been refuted by the findings of
van Ewijk and Hoekstra (1994). Clarke (1987) specifically designed his marginal
curvature measure to reflect the closeness or otherwise of the Wald and the profile
likelihood-based intervals, but the measure is approximate and does not perform
well in all cases. In summary, none of the existing curvature measures associated
with individual model parameters are entirely satisfactory in terms of assess-
ing the reliability of the Wald confidence intervals. Interestingly Cook and Tsai
(1990) approached the problem of assessing the closeness or otherwise of Wald
and profile likelihood intervals more directly, by invoking a method introduced
by Hodges (1987) which is based on determining the confidence levels associ-
ated with the smallest Wald interval containing, and the largest Wald interval
contained in, the likelihood-based interval.

The aim of the present study is two-fold, first to develop a formula for the
second-order approximation to kurtosis for the least squares estimates of the
individual model parameters and to relate this to other measures of curvature,
and second to develop a measure based on skewness and kurtosis which predicts
well the closeness or otherwise of the Wald and the likelihood-based confidence
intervals. The paper is organized as follows. Relevant notation and background
are given in the next section and the new results on kurtosis are derived in Section
3. Various measures of curvature are related to the second-order approximations
to skewness and kurtosis in Section 4, and a composite measure for assessing
the accuracy of the Wald confidence intervals is developed in Section 5. Several
illustrative examples are provided in Section 6 and the Fieller-Creasy problem is
treated in detail in Section 7. Some brief conclusions are drawn in Section 8.

2. Preliminaries

Consider the nonlinear regression model

yi = η(xi, θ) + εi, i = 1, . . . , n,
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where yi is an observation taken at a value xi of the explanatory variable x, θ is a
p× 1 vector of unknown parameters, η(xi, θ) is a function nonlinear in and three
times differentiable with respect to θ, and the εi are error terms independently
distributed as N(0, σ2). Let D be the (n× p) matrix with (i, a)th entry ∂ηi/∂θa

where ηi = η(xi, θ), let G = DT D, and introduce a matrix K, not necessarily
unique, such that KT DT DK = I. Furthermore, define B to be the 3-dimensional
array of order (p × p × p) with (l, rs)th element given by

Bl,rs =
∑
a,b,c

∑
i

KlaKrbKsc
∂ηi

∂θa

∂2ηi

∂θb∂θc
,

and let Bl denote the lth face of that array for l = 1, . . . , p. Also define C to be
the 4-dimensional array of order (p × p × p × p) with (l, rst)th element given by

Cl,rst =
∑

a,b,c,d

∑
i

KlaKrbKscKtd
∂ηi

∂θa

∂3ηi

∂θb∂θc∂θd
,

and let Cl denote the lth 3-dimensional symmetric array within C for l = 1, . . . , p.
Next, consider an individual parameter θj with maximum likelihood estimate

θ̂j and define tj = θ̂j − θj for j = 1, . . . , p. Let z = KT DT e and w = He,
with H an orthonormal matrix such that KT DT H = 0. Clearly z ∼ N(0, σ2I)
independently of w. Then, following Clarke (1980), tj can be expanded in a
power series in terms of z and w. Specifically, suppose that terms in w are
neglected, since these are associated with the intrinsic nonlinearity of the model,
and suppose also that terms in z of degree four and higher are ignored. Then the
series can be written as

tj = s10 + s20 + sb
30 + sc

30 + · · · , (2.1)

where the subscripts u and v in the terms suv denote the degree in z and in
w, respectively, and the superscripts b and c for s30 identify terms involving the
matrices B and C separately. Furthermore, let kT

j denote the jth row of K, b
the vector with lth element zT Blz =

∑
r,s Bl,rszrzs, and c the vector with lth

element
∑

r,s,t Cl,rstzrzszt for l = 1, . . . , p. Then it immediately follows from
Clarke (1980) that s10 = kT

j z and that s20 = −(1/2)kT
j b = −(1/2)zT Mz, where

M =
∑

l KjlBl. Also

sb
30 =

1
2
bT Mz =

1
2

∑
l

(zT Blz)(mT
l z), (2.2)

where mT
l denotes the lth row of M , and

sc
30 = −1

6
kT

j c = −1
6

∑
r,s,t

∑
l

KjlCl,rstzrzszt

= −1
6

∑
r

(zT Nrz)zr = −1
6

∑
r

(zT Nrz)(eT
r z), (2.3)
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where Nr is the rth face of the symmetric 3-dimensional array N =
∑

l KjlCl,
and er is a vector with rth element equal to 1 and all other elements 0.

The second-order approximation to the bias in θ̂j is thus given by

E(s20) = −1
2
E(zT Mz) = −1

2
σ2tr(M) = −1

2
σ2

∑
r

∑
l

KjlBl,rr

in accord with the findings of Box (1971), Bates and Watts (1980) and Clarke
(1980). Further, following Clarke (1980), the second-order approximation to the
variance of θ̂j is given by

E[s2
10] + E[(s20 − E[s20])2] + 2E[s10s

b
30] + 2E[s10s

c
30],

where E[s2
10] = σ2gjj with gjj the (jj)th element of G−1, and where the three

trailing terms can be summarized as σ4vj,add with vj,add equal to

∑
r,s

∑
l,m

{1
2
KjlKjmBl,rsBm,rs + KjlKjrBl,mrBm,ss + 2KjlKjsBl,mrBm,rs}

−
∑
r,s

∑
l

KjlKjrCl,rss.

The required approximation can thus be written succinctly as σ2gjj + σ4vj,add.

The third central moment of θ̂j can be expressed as E[(tj −E[tj ])3] and the term
contributing to the second order approximation to this moment is given by

3E[s2
10(s20 − E[s20])] = 3 Cov(s2

10, s20)

= −3σ4kT
j Mkj

= −3σ4
∑
r,s

∑
l

KjrKjsKjlBl,rs.

It then follows that the second-order approximation to the coefficient of skewness
for θ̂j can be expressed as γ1 = −3σΓ where, in the notation of Clarke (1987),
Γ = (gjj)−3/2kT

j Mkj . This result is in agreement with the findings of Hougaard
(1982, 1985). Many of the above results are also presented clearly and concisely
by Seber and Wild (1989).

3. New Results on Kurtosis

The second-order approximation to the fourth central moment of θ̂j, and
thus equivalently to E[(tj −E[tj ])4], follows immediately from (2.1) and is given
by

E[s4
10] + 6E[s2

10(s20 − E[s20])2] + 4E[s3
10s

b
30] + 4E[s3

10s
c
30]. (3.1)
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Now E[s4
10]=E[(kT

j z)4]=3σ4(gjj)2. Also, since s10 =kT
j z and s20 = (1/2)zT Mz,

it follows from (A.1) in the Appendix that

E[s2
10(s20 − E[s20])2] = E[s2

10]E[(s20 − E[s20])2] + 2σ6kT
j M2kj ,

where the term kT
j M2kj is given explicitly by

∑
r,s,t

∑
l,m KjrKjtKjlKjmBl,rs

Bm,st and, in the notation of Clarke (1987), by (gjj)3ΓlΓl. Furthermore it follows
from the expressions for sb

30 and sc
30 given in (2.2) and (2.3), respectively, and by

invoking result (A.2) in the Appendix, that

E[s3
10s

b
30] = 3E[s2

10]E[s10s
b
30] + 3σ6

∑
l

(kT
j ml)(kT

j Blkj),

E[s3
10s

c
30] = 3E[s2

10]E[s10s
c
30] − σ6

∑
r

(kT
j er)(kT

j Nrkj),

where the summations
∑

l(k
T
j ml)(kT

j Blkj) and
∑

r(k
T
j er)(kT

j Nrkj) are given ex-
plicitly in terms of elements of the matrices K,B and C by

∑
r,s,t

∑
l,mKjrKjsKjt

KjmBm,lrBl,st and
∑

r,s,t

∑
lKjrKjsKjtKjlCl,rst and, in the notation of Clarke

(1987), by (gjj)3ΓlΓl and (gjj)3κ respectively. It thus follows, by gathering the
above expressions for the terms in (3.1) together and by recalling that σ4vj,add is
given by E[(s20 −E[s20])2] + 2E[s10s

b
30] + 2E[s10s

c
30], that the required approxi-

mation to the fourth central moment of θ̂j can be expressed succinctly as

3σ4(gjj)2 + 6σ6gjjvj,add + 12σ6(gjj)2βa, (3.2)

where βa = gjj(ΓlΓl+ΓlΓl−(1/3)κ). Furthermore, a second-order approximation
to the coefficient of kurtosis can be obtained from (3.2) and from the square of
the variance of θ̂j, (σ2gjj + σ4v2

j,add + · · ·)2, expanded as σ4(gjj)2 + 2σ6gjjvj,add.
Specifically the approximation is given by

3 +
12σ6(gjj)2βa

σ4(gjj)2 + 2σ6gjjvj,add

and further, since it is reasonable to assume that
∣∣2σ2vj,add/g

jj
∣∣ < 1, by 3 +

12σ2βa. Thus the second-order approximation to the excess kurtosis is simply
γ2 = 12σ2βa.

4. Relating Curvature Measures

Cook and Goldberg (1986) developed subset intrinsic and subset parameter-
effects curvature measures for the parameters of a nonlinear regression model.
These hold for an individual parameter taken without loss of generality to be
θp, the last element of the vector θ, and are given by Γτ

s(θp) = σ|Bp,pp| and
Γη

s(θp) = 2σ{∑p−1
r=1 B2

p,pr}
1
2 , respectively. The measures can be related to the
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terms involved in the second-order approximations to skewness and kurtosis by
observing that for K an upper triangular matrix, kT

p = [0 · · · 0 Kpp] and gpp =
K2

pp. It then follows immediately that Γτ
s(θp) = σ|Γ| in accord with the result

derived by Kang and Rawlings (1998) and implied by Clarke (1987). In addition
it follows that Γη

s(θp) = 2σ{gppΓlΓl − Γ2} 1
2 and thus that the relation between

intrinsic subset curvature and kurtosis would seem to be rather convoluted. It is
however tempting to surmise that the latter expression is incomplete and should,
more correctly, be given by Γη

s(θp) = 2σ{βa − Γ2} 1
2 . Cook and Goldberg (1986)

also introduced a measure combining the subset intrinsic and the parameter-
effects subset curvatures, termed the total subset curvature, and given by Γs =
[Γτ

s(θp)2 + Γη
s(θp)2]1/2.

Clarke (1987) developed approximate confidence limits for an individual pa-
rameter θj which are based on an expansion of the profile likelihood and which
can be expressed in the form

θj − θ̂j = (gjjσ2)
1
2 c{1 − 1

2
Γσc +

1
2
βσ2c2 + · · ·}, (4.1)

where β = βa − Γ2 and c is an appropriately chosen critical value. In addition,
(1/2)σ|Γ| was introduced as a measure of marginal curvature (see also Kang and
Rawlings (1998)). The relation of the terms in this expression to those in the
second-order approximations to the coefficients of skewness and kurtosis for θ̂j

is immediate. Furthermore it is interesting to note that the “skewness” of the
confidence interval for θj defined by (4.1) is captured by Γσ and the “flatness”
by βaσ

2, and thus that these terms are in turn directly related to the skewness
and kurtosis for θ̂j, respectively. In fact (4.1) can be rewritten as

θj − θ̂j = (gjjσ2)
1
2 c{1 +

1
6
γ1c +

1
72

(3γ2 − 4γ2
1)c2 + · · ·}. (4.2)

The approximation to the coefficient of skewness derived by Hougaard (1985),
the subset parameter-effects curvature measure of Cook and Goldberg (1986)
and the marginal curvature of Clarke (1987) are the same up to multiplying
constants. However, it should also be emphasized that the curvature measures
discussed here are all derived assuming that the intrinsic nonlinearity of the
model is negligible. This is not an unreasonable assumption in general and can
in any case be appraised by examining the value of the maximum or the root-
mean-square intrinsic curvature for the particular model of interest (Bates and
Watts (1980)).

Ratkowsky (1983), following earlier work of Gillis and Ratkowsky (1978),
suggested assessing the nonlinearity associated with an individual parameter θj

by appraising the normality or otherwise of the distribution of the maximum like-
lihood estimate θ̂j. Specifically, the approach involves estimating the coefficients
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of skewness and kurtosis for θ̂j by simulation and invoking tests of significance
commonly associated those coefficients. The method is not entirely satisfactory
however. In particular, simulations are time-consuming and the nonlinear opti-
mization routine used in the estimation of the parameters may not converge for
all simulated data sets. Also the standard errors associated with the estimates
of the coefficients, and specifically that for the excess kurtosis, are generally
large. In addition, the tests of significance associated with the coefficients are
not necessarily diagnostic (Horswell and Looney (1993), Rayner, Best and Math-
ews (1995)). Some of these concerns are illustrated by means of the following
example.

Example 4.1. The Michaelis-Menten reaction. Bliss and James (1966) reported
a data set from enzyme kinetics which is well modelled by the Michaelis-Menten
equation. Specifically η(x, θ) = θ1x/(θ2 + x), where η(x, θ) represents the veloc-
ity of the reaction at the substrate concentration x and θ1 and θ2 are unknown
parameters. There were six observations and the maximum likelihood estimates
of the parameters are given by θ̂ = {0.6904, 0.5965} and σ̂2 = 0.000184. The
maximum intrinsic curvature for the model, ΓN , was found to be 0.050 which,
following the rule of thumb given by Bates and Watts (1980), is deemed to be
negligible. 1,000 data sets were generated from this model, with the x-values
set to those reported in Bliss and James (1966) and with the true parameter
values for θ and σ2 taken to be the maximum likelihood estimates of the original
data, and estimates of the mean, the variance and the coefficients of skewness
and excess kurtosis for θ̂ obtained. The process was repeated 10,000 times and
the results are summarized in Table 1(a). It is clear from the standard errors
recorded in that table that the simulated estimate of excess kurtosis is highly
variable, an observation which underscores the fragility of the tests suggested by
Ratkowsky (1983). Indeed conclusions drawn from a single simulation, or indeed
from hundreds of simulations, are expected to be unconvincing. The second-order
approximations to skewness and kurtosis given by −3Γσ̂ and 12βaσ̂

2, respectively,
are included in Table 1(b) and are remarkably close to the simulated values.

Ratkowsky (1990) suggested that the second-order approximation to the co-
efficient of skewness derived by Hougaard (1985) should replace the estimate
obtained by simulation since the former is computed more readily and is in gen-
eral more reliable. Indeed Hougaard’s approximation is incorporated into version
8.0 of the software package SAS�. It now follows immediately from the findings
of the present study that the second-order approximation to the excess kurtosis
derived in Section 3 is also to be preferred to the simulated estimate. It should
be emphasized however that the approximations for skewness and kurtosis ig-
nore high-order terms in σ2 and terms involving intrinsic nonlinearity, and are
therefore not necessarily always close to the true values.
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Table 1. Mean, variance, coefficient of skewness and excess kurtosis for the
maximum likelihood estimates θ̂1 and θ̂2 for Example 4.1.

parameter mean variance skewness kurtosis
0.6924 0.001387 0.2967 0.1799

θ̂1 (±0.00117) (±0.000065) (±0.08633) (±0.2363)
0.6008 0.004803 0.3888 0.2901

θ̂2 (±0.00218) (±0.00023) (±0.09073) (±0.28649)

(a) Results from simulating 1,000 data sets 10,000 times, with
standard errors given in parenthesis.

parameter mean variance skewness kurtosis

θ̂1 0.6924 0.001356 0.2898 0.1817

θ̂2 0.6008 0.004658 0.3792 0.2837

(b) Second-order approximations.

5. Relating Skewness and Kurtosis to Nonlinearity

An attractive approach to assessing the nonlinearity associated with a pa-
rameter of interest is that based on a comparison of the closeness or otherwise
of the Wald and the profile likelihood intervals for that parameter. This idea is
presented in the paper of Cook and Tsai (1990), following the earlier and more
general results of Jennings (1986) and Hodges (1987), and complements methods
based on measures of curvature. It is interesting therefore to relate the measures
of skewness and kurtosis developed in Sections 2 and 3 to the discrepancy be-
tween the Wald and the profile likelihood intervals of an individual parameter
and hence, albeit tentatively, to the nonlinearity associated with that parameter.
This can be achieved by using the second-order approximation to the profile like-
lihood developed by Clarke (1987), and given in (4.1), and by invoking specific
measures of closeness of Wald and profile likelihood-based intervals. The idea
is similar in principle to that introduced in a more general setting by Cook and
Tsai (1990).

The aim of linking skewness and kurtosis for an individual parameter with
the agreement or otherwise of the Wald and profile likelihood-based intervals is
two-fold. First the values of skewness and kurtosis can be used jointly to provide
an indication of how well a particular Wald interval approximates that based
on the profile likelihood. Cook and Weisberg (1990) emphasize however that
calculating intervals based on profile likelihoods, particularly in the context of
confidence curves, is not a difficult task. Indeed, as pointed out by one of the
referees, if the calculation of the profile likelihood for a given parameter proves
difficult, this could well be an indication of an inappropriate model or of high
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intrinsic nonlinearity associated with that parameter. Nevertheless it is possible
that a practitioner is interested in setting a single confidence interval to a given
parameter and has available the appropriate Wald confidence interval and values
of the measures of skewness and kurtosis. In such cases an indication of how
close or otherwise the Wald interval is to that based on the profile likelihood
could well be useful.

Second, it is appealing to use the relationship between skewness and kurtosis
and the discrepancy between Wald and profile likelihood-based intervals for an
individual parameter to develop a rule of thumb for assessing how large or small
those measures are and, more generally but possibly somewhat tentatively, to
formulate a measure of nonlinearity associated with the parameter of interest.
This idea should be treated with some caution however. In particular Cook and
Tsai (1990) and Cook and Weisberg (1990) emphasize that, in examining the
closeness or otherwise of Wald and profile likelihood intervals for an individual
parameter, it is highly desirable to examine such intervals over a wide range of
confidence levels and not at just one level. Clearly cognizance must be taken of
this.

Two methods for quantifying the closeness or otherwise of the Wald interval
to the interval based on the profile likelihood, or rather on Clarke’s approximation
to that likelihood, are explored here in terms of skewness and kurtosis. The one
approach is based on the notion of approximate relative overlap introduced by
van Ewijk and Hoekstra (1994), and the other on the contours method of Hodges
(1987).

5.1. Approximate relative overlap

In order to appraise the reasonableness or otherwise of the linear approxi-
mation to a nonlinear model in terms of an individual parameter, van Ewijk and
Hoekstra (1994) introduced the notion of relative overlap which is defined as the
ratio of the intersection of the Wald and profile likelihood-based confidence inter-
vals to the union of those intervals. It is thus possible to derive an approximation
to the exact relative overlap using the profile likelihood-based confidence interval
developed by Clarke (1987), and to formulate this in terms of the measures of
skewness and kurtosis γ1 and γ2, respectively. Specifically, the Wald interval for
the parameter θj is given by θ̂j±cσ(gjj)1/2. Further, following Clarke (1987) and
invoking (4.1), the lower and upper limits of the profile likelihood-based interval
are approximated by θ̂j −cσ(gjj)1/2{1+Γt +Bt} and θ̂j +cσ(gjj)1/2{1−Γt +Bt},
respectively, where Γt = (1/2)Γσc, Bt = (1/2)βσ2c2 and c > 0 is an appropriate
critical value. Equivalently these limits follow immediately from (4.2) and hence
are given by

θ̂j − cσ(gjj)
1
2 {1 − γ1c

6
+

1
72

(3γ2c − 4γ2
1c)}
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and θ̂j + cσ(gjj)
1
2 {1 +

γ1c

6
+

1
72

(3γ2c − 4γ2
1c)},

respectively, where γ1c = γ1c and γ2c = γ2c
2. Expressions for the approximate

relative overlap calculated from these intervals depend on the ordering of the
associated limits and are summarized, together with the attendant conditions
for the expressions to hold, in Table 2.

Table 2. Expressions for the approximate relative overlap (ARO) based on
the Wald (W) and the approximate profile likelihood-based (P) confidence
limits in terms of γ1c and γ2c.

order of limits ARO conditions relation of γ2c and γ1c to p

PWWP 72

72+3γ2c−4γ2
1c

γ2c > 4
3
γ1c(γ1c − 3) and

γ2c > 4
3
γ1c(γ1c + 3)

γ2c = 4
3
γ2
1c + 24 (1−p)

p

PWPW
144+3γ2c−4γ2

1c+12γ1c

144+3γ2c−4γ2
1c

−12γ1c

γ1c < 0, γ2c < 4
3
γ1c(γ1c − 3)

and γ2c > 4
3
γ1c(γ1c + 3)

γ2c = 4
3
γ2
1c − 4(1+p)

1−p
γ1c − 48

WPWP
144+3γ2c−4γ2

1c−12γ1c

144+3γ2c−4γ2
1c

+12γ1c

γ1c > 0, γ2c > 4
3
γ1c(γ1c − 3)

and γ2c < 4
3
γ1c(γ1c + 3)

γ2c = 4
3
γ2
1c + 4(1+p)

1−p
γ1c − 48

WPPW
72+3γ2c−4γ2

1c

72

γ2c < 4
3
γ1c(γ1c − 3) and

γ2c < 4
3
γ1c(γ1c + 3)

γ2c = 4
3
γ2
1c − 24(1 − p)

It is also interesting to consider the region in the space of (γ1c, γ2c)-pairs
within which the relative overlap is greater than or equal to some fixed value p
with 0 < p < 1. This area, denoted Bp, is bounded by the parabolas specified
in the last column of Table 2 and is illustrated for p = 0.90 in Figure 1. How-
ever values of γ1c and γ2 which fall within the area Bp are awkward to specify
explicitly. Consider therefore the largest rectangle completely enclosed by the
boundaries of the region Bp and specified by −6(1 − p) ≤ γ1c ≤ 6(1 − p) and
−24(1 − p)(2p − 1) ≤ γ2c ≤ 24(1 − p)/p. Then the ranges of γ1c and γ2c so de-
fined provide a conservative approximation to the values of γ1c and γ2c for which
the approximate relative overlap is greater than or equal to p. These ranges
are listed in Table 3 for selected values of p and the associated rectangle for
p = 0.90 is graphed in Figure 1. Finally, note that the probabilities associated
with the largest rectangle enclosed by Bp with boundaries γ1c and γ2c are given
by p1 = 1 − (1/6) |γ1c| and

p2 =




24
24 + γ2c

for γ2c ≥ 0,

3
4

+
1
4

√
1 +

1
3
γ2c for − 3 ≤ γ2c < 0,

respectively, and hence that the probability Pmin = min{p1, p2} can be introduced
in place of approximate relative overlap.
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Figure 1. The region in the space of (γ1c, γ2c)-pairs within which the relative
overlap of the Wald and likelihood-based confidence intervals is greater than
or equal to 90% (solid line), together with the largest rectangle enclosed by
the boundaries of that region (dashed line).

Table 3. Ranges of γ1c and γ2c which define the largest rectangle enclosed by Bp.

p range for γ1c range for γ2c

90% −0.60 ≤ γ1c ≤ 0.60 −1.92 ≤ γ2c ≤ 2.67
95% −0.30 ≤ γ1c ≤ 0.30 −1.08 ≤ γ2c ≤ 1.26

98.3% −0.10 ≤ γ1c ≤ 0.10 −0.39 ≤ γ2c ≤ 0.41
99% −0.06 ≤ γ1c ≤ 0.06 −0.24 ≤ γ2c ≤ 0.24

The results summarized in Tables 2 and 3 can be used immediately to as-
sess the closeness or otherwise of Wald and profile likelihood-based intervals for a
given parameter. Specifically, consider setting a single confidence interval to that
parameter and suppose that the approximate measures of skewness and kurtosis
are available. Then Clarke’s approximation to the limits for the profile likelihood
can be calculated and the approximate relative overlap found using the appropri-
ate formula from Table 2. Alternatively, and more simply, the discrepancy in the
intervals can be assessed directly from γ1c and γ2c by using Table 3 to identify
the approximate relative overlap associated with those values. Note that relative
overlap between the Wald and the profile likelihood intervals has a ready inter-
pretation and thus the practitioner can decide whether or not the approximate
value so calculated is reasonable.

It should be noted here that Clarke (1987) recommended using marginal
curvature, which is equivalent to scaled skewness, to indicate whether the Wald,
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the adjusted or the exact profile likelihood-based confidence intervals for an in-
dividual parameter should be calculated but the measure does not perform well
in all cases. In the present study this idea is, in essence, extended by introducing
a joint measure incorporating both scaled skewness and kurtosis. At the same
time, in view of the findings of Cook and Tsai (1990) and Cook and Weisberg
(1990), the calculation of adjusted Wald confidence intervals as advocated by
Clarke (1987) is not considered.

It is tempting to suggest that the approximate relative overlap of the Wald
and profile likelihood-based intervals for a given parameter, and thus the mea-
sures of skewness and kurtosis jointly, can be used to assess the nonlinearity
associated with that parameter. However, as noted already, Cook and Weisberg
(1990) caution against basing such measures on intervals at a single level of con-
fidence. Hence, as a rough rule of thumb, it is tentatively recommended that
the nonlinearity associated with a parameter be deemed negligible if the approx-
imate relative overlap for the 99% confidence interval exceeds 95%, that it be
considered moderate if the overlap for the 95% confidence interval exceeds 95%
but that for the 99% interval does not, and that otherwise the nonlinearity be
taken to be severe.

These results can also be translated into a rough rule of thumb for assessing
the measures of skewness and kurtosis. Specifically suppose that a relative over-
lap of the Wald and profile likelihood intervals of 95% or higher is considered
satisfactory. Then, if the critical value specified by c is equal to 3 corresponding
to a deviation from the parameter estimate of three standard errors, it follows
from Table 3 that the measures of skewness and kurtosis fall in the intervals

− 0.1 ≤ γ1 ≤ 0.1 and − 0.12 ≤ γ2 ≤ 0.14, (5.1)

and if c is equal to 2 these measures fall in the ranges

− 0.15 ≤ γ1 ≤ 0.15 and − 0.27 ≤ γ2 ≤ 0.315, (5.2)

respectively. Thus a rough rule of thumb would be to take the measures of
skewness and kurtosis, either individually or jointly, to be negligible if they fall
within the limits specified in (5.1), to be moderate if they fall outside those limits
but within the limits given in (5.2), and to be severe otherwise. It is interesting
to note that the rule of thumb for γ1 alone derived here is in accord with, but
slightly more conservative than, that advocated by Ratkowsky (1983).

5.2 The contours method

An approach to appraising the closeness or otherwise of likelihood-based and
approximate confidence regions for the parameters of a model, termed the con-
tours method, was introduced by Hodges (1987) and extended to include subsets
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of parameters by Cook and Tsai (1990). In the case of a single parameter, the
method reduces to finding the confidence levels associated with the smallest Wald
interval containing the interval based on the profile likelihood, say Wmax, and the
largest Wald interval contained in the likelihood-based interval, say Wmin, and
comparing these levels with the nominal confidence level. In the present con-
text, suppose that interest centers on setting a specified confidence interval to a
parameter of interest and suppose that the associated critical value is c. Then,
if the Clarke approximation to the profile likelihood is invoked, it is straight-
forward to show that the critical value associated with Wmax is given, at least
approximately, by

c�
max = c{1 +

|γ1c|
6

+
1
72

(3γ2c − 4γ2
1c)},

and that with Wmin by

c�
min = c{1 − |γ1c|

6
+

1
72

(3γ2c − 4γ2
1c)}.

Confidence levels associated with c�
max and c�

min, denoted 1 − αmax and 1 − αmin

respectively, can immediately be calculated. As indicated by Hodges (1987)
and by Cook and Tsai (1990), these levels have a natural interpretation and
the practitioner can therefore decide, depending on the particular model setting,
whether or not they are satisfactorily close to the nominal level.

6. Examples

The results and recommendations of the previous sections are now illustrated
by means of selected examples of model-data settings taken from the literature.
The Fieller-Creasy problem, which is amenable to a more extensive algebraic
treatment, is considered in the following section.

6.1 The Michaelis-Menten model

Consider fitting the Michaelis-Menten model to the enzyme kinetic data of
Bliss and James (1966), as described in Example 4.1, and specifically consider
setting 95% confidence intervals to the individual parameters θ1 and θ2. The
appropriate critical value c is t4;0.025 = 2.7765, the 2.5% critical t value with
4 degrees of freedom, and the least squares estimates of the parameters, the
associated standard errors, the scaled skewness and kurtosis, the approximate
and exact relative overlaps of the Wald and likelihood-based confidence intervals
and the confidence levels associated with the Wald intervals Wmin and Wmax are
summarized in Table 4. The approximate relative overlaps of the confidence inter-
vals, or equivalently the values of γ1c and γ2c, indicate very clearly that the Wald
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limits are not satisfactory and that the profile likelihood-based intervals should
be calculated for both parameters. This is affirmed by the values of the Wald
and likelihood-based confidence limits of (0.5882, 0.7926) and (0.5989, 0.8105),
respectively, for θ1 and of (0.4070, 0.7861) and (0.4336, 0.8295), respectively, for
θ2 (Clarke (1987)).

Table 4. Curvature measures and relative overlap of the 95% confidence
intervals for the individual parameters of the Michaelis-Menten model.

θp θ̂p SE(θ̂p) γ1c γ2c ARO ERO 1 − αmin 1 − αmax

θ1 0.6904 0.0368 0.8038 1.4005 0.8757 0.8701 0.9308 0.9674
θ2 0.5965 0.0683 1.0528 2.1866 0.8408 0.8341 0.9233 0.9713

It is reassuring to observe that the approximate and the exact relative over-
laps of the Wald and likelihood-based confidence intervals are in close agreement,
indicating that Clarke’s approximation to the profile likelihood works well for this
example. Note also that the confidence levels corresponding to the Wald intervals
Wmin and Wmax are not particularly close to the nominal level of 0.95, thereby
supporting the recommendation that intervals based on the profile likelihood
should be calculated for both parameters.

6.2. The Mitscherlich model

Consider the biomedical oxygen demand data set 1 from Draper and Smith
(1981, p. 522) and specifically, following van Ewijk and Hoekstra (1994), consider
fitting the three-parameter Mitscherlich model

η(x, θ) = θ1 + θ2e
θ3x, (6.1)

where η(x, θ) represents biomedical oxygen demand and x represents time, to that
data. Suppose that interest centers on setting 95% confidence intervals to the
three parameters of the model. The maximum intrinsic curvature for the model,
ΓN , was computed to be 0.121 and is negligible. The critical value c is taken
to be t4;0.025 = 2.7765 and parameter estimates, the associated standard errors,
the terms Γt and Bt, and the approximate and exact relative overlaps of the
Wald and likelihood-based intervals for the individual parameters are presented
in Table 5(a). The results for the parameter θ2 are disturbing. Specifically,
there is a sharp disparity between the approximate and exact relative overlaps
of the Wald and the profile likelihood-based confidence intervals. One possible
explanation for this apparent anomaly is that the value of the term Bt for the
parameter θ2 is almost twice that of Γt, and thus the neglect of high-order terms
in the expansion of the profile likelihood as a power series may not be justified
(see also Clarke (1987, Example 3.2)). Alternatively, and more persuasively, the
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Mitscherlich model could well be inappropriate. In fact Draper and Smith (1981,
p.522) indicate that the exponential decay model with η(x, θ) = θ1(1 − eθ3x) is
physically meaningful for biomedical oxygen demand data and, indeed, Bates
and Watts (1988, p.41) fitted this model to such data. In the present case the
fit of the exponential decay model to the data is good and, in addition, the
approximate and exact relative overlaps of the Wald and likelihood-based 95%
confidence intervals are in close agreement for both parameters.

Table 5. Curvature measures and relative overlap of the 95% confidence
intervals for the individual parameters of the Mitscherlich model.

θp θ̂p SE(θ̂p) Γt Bt ARO Pmin ERO
θ1 222.627 14.927 -0.5325 0.3263 0.6275 0.4675 0.4973
θ2 -191.303 10.397 0.0721 0.1392 0.8778 0.8699 0.5722
θ3 -0.2996 0.0675 0.0643 0.0257 0.9385 0.9357 0.9378

(a) Biomedical oxygen demand data.

θp θ̂p SE(θ̂p) Γt Bt ARO Pmin ERO
θ1 539.084 9.4323 -0.2405 0.0797 0.7927 0.7595 0.7791
θ2 -307.548 9.7182 0.1305 0.0560 0.8806 0.8695 0.8647
θ3 -0.0155 0.00126 0.0776 0.0183 0.9259 0.9224 0.9265

(b) Potato data.

To further allay concerns with regard to the setting of confidence limits to the
parameters of the Mitscherlich model, a second data set, taken from Pimentel-
Gomes (1953) and recorded as data set 6 in Ratkowsky (1983, p.102), was exam-
ined. The data comprise yields of potatoes for varying amounts of fertilizer, and
interest again centers on setting 95% confidence intervals to the parameters. The
intrinsic curvature for the model-data setting is negligible, the value of c is taken
to be t2;0.025 = 4.3027, and details of the parameter estimates, the terms Γt and
Bt and the relative overlap are given in Table 5(b). The parameters θ1 and θ2 are
clearly significantly different and the three-parameter model fits the data well. In
addition for the parameter θ2 the value of the term Bt is less than half that of Γt,
indicating that high-order terms in σ2 in the expansion of the profile likelihood
can be neglected. Furthermore the agreement between approximate and relative
overlap for parameter θ2, and indeed for all the parameters, is excellent. Note in
addition that the value of Pmin is close to, and thus a reasonable approximation
for, the relative overlap.

Overall the results of this example underscore the need to treat approximate
profile likelihood-based confidence limits associated with individual parameters
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for which Bt > Γt with considerable caution and, in addition and arguably more
importantly, to ensure that an appropriate model is fitted to the data.

6.3. The logistic model

Consider the data on bean root cells introduced by Ratkowsky (1983, p.88)
and in particular consider fitting the three-parameter logistic model

η(x, θ) =
θ1

1 + eθ2(x−θ3)
,

where η(x, θ) represents water content of the cell and x the distance of the cell
from the root tip, to this data. Note that the maximum intrinsic curvature
associated with the overall model, ΓN = 0.107, is negligible. Details of the
parameter estimates and their standard errors, the approximate relative overlap
of the 95% and the 99% Wald and profile likelihood confidence intervals, labelled
ARO95 and ARO99 respectively, the skewness and kurtosis and the total subset
curvature are summarized in Table 6. Note that for this example good agreement
between approximate and exact relative overlap of the confidence intervals was
observed and the exact values are therefore not recorded.

Table 6. Parameter estimates, approximate relative overlap, skewness and
kurtosis and the total subset curvature relating to the individual parameters
of the logistic model.

θ θ̂ SE ARO95 ARO99 γ1 γ2 Γs

θ1 21.509 0.4154 0.9519 0.9335 0.1362 0.0634 0.1020
θ2 -0.6222 0.0446 0.9098 0.8766 -0.2618 0.1575 0.0914
θ3 6.3604 0.1388 0.9736 0.9633 0.0740 0.0421 0.1260

Cook and Goldberg (1986) suggested that total subset curvature, Γs, be
used to appraise the closeness or otherwise of the Wald and profile likelihood-
based confidence intervals for an individual parameter, with values “substantially
less” than the inverse of the appropriate critical value indicating close-to-linear
behaviour. In the present example the values of Γs recorded in Table 6 are indeed
substantially smaller than the values of 1/c of 0.4592 and 0.3274 for the 95%
and 99% confidence intervals respectively, indicating that the Wald intervals are
satisfactory in all cases. In contrast the values of the approximate relative overlap
indicate that intervals based on the profile likelihoods should be calculated at
both the 95% and 99% confidence levels for parameter θ2, at the 99% level for
θ1, and that the Wald intervals are acceptable otherwise. The discrepancy in the
conclusions relating to the closeness or otherwise of the Wald and the likelihood-
based intervals drawn from the approximate relative overlaps and from the total
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subset curvatures are disturbing. Furthermore it is also clear from Table 6 that
total subset curvature and approximate relative overlap do not appear to be
related in an obvious way. Similar observations were made by van Ewijk and
Hoekstra (1994), prompting them to refute the use of total subset curvature in
assessing the appropriateness or otherwise of Wald confidence intervals.

In order to assess the nonlinearity associated with an individual parameter
more broadly, the rules of thumb based on approximate relative overlap and
developed in Section 5.1 can be invoked. Specifically these indicate that the
nonlinearity for the parameter θ3 is negligible, that for θ1 is moderate and that
for θ2 tends to be severe. Furthermore, as explained in Section 5.1, these rules of
thumb can be translated into rules of thumb for the skewness and kurtosis of the
distribution of the corresponding estimates. In the present case it is clear that
the nonlinearity exhibited by the parameters θ1 and θ2 can be identified with
skewness rather than kurtosis.

Finally, as an aside, it is interesting to note that van Ewijk and Hoekstra
(1994) fitted the Mitscherlich model of Example 6.2 to the current data set. This
is a curious choice of model in that the data clearly exhibit a sigmoidal growth
pattern whereas the model function (6.1) has no point of inflection. In fact the fit
is very poor. As a consequence, measures of curvature associated with fitting the
Mitscherlich model to the bean root cell data set and the conclusions drawn from
them, in particular by van Ewijk and Hoekstra (1994), may well be unreliable
and possibly misleading. This observation again highlights the importance of
fitting an appropriate model to a particular data set.

6.4. The linear logistic model

van Ewijk and Hoekstra (1994) examined a large number of ecotoxicity data
sets and advocated fitting the linear logistic model

η(x, θ) =
θ1

{
1 + 1

2(eθ2θ3 − 1)ex−θ4

}
1 + eθ2(x−θ4+θ3)

,

where η(x, θ) represents plant growth and x the natural log of the concentration
of chemical compound to such data. Note that the parameter θ4 corresponds to
the natural log of the ED50 and is of particular interest in these examples. The
intrinsic curvature for many of the model-data settings is high and the linear
logistic model was therefore fitted to one of the data sets provided by van Ewijk
and Hoekstra (1994) for which the maximum intrinsic curvature ΓN = 0.450 is
relatively small, namely data set 73. The critical value of c is t10;0.025 = 2.2281
and parameter estimates, scaled total subset curvature and measures of relative
overlap of the Wald and likelihood-based 95% confidence intervals for the model
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parameters are presented in Table 7. It is immediately clear that the approximate
relative overlap and the probability Pmin are good indicators of exact relative
overlap, whereas total subset curvature is not. Furthermore for the parameter
of interest, θ4, the value of the approximate relative overlap indicates that the
95% confidence limits be taken as the those based on the profile likelihood. This
recommendation is supported by the fact that the Wald and the exact likelihood-
based intervals are given by (1.0122, 1.7409) and (1.0386, 1.7947), respectively.

Table 7. Parameter estimates, scaled total subset curvature and relative
overlap for the parameters of the linear logistic model.

θp θ̂p SE(θ̂p) cΓs ARO Pmin ERO
θ1 0.0469 0.0023 0.0936 0.9906 0.9905 0.9932
θ2 1.4476 0.0504 0.4039 0.8672 0.8561 0.8565
θ3 2.1689 0.4089 0.4942 0.9567 0.9567 0.9768
θ4 1.3769 0.1636 0.4672 0.9029 0.8967 0.8964

7. The Fieller-Creasy Problem

Cook and Witmer (1985) formulated the Fieller-Creasy problem relating to
the estimation of the ratio of two population means as a nonlinear regression
model. Specifically suppose that random samples of size n are drawn indepen-
dently from two normal populations with means θ1 and θ1θ2, respectively, and
with a common variance σ2. Then the observations can be modelled as

yi = θ1xi + θ1θ2(1 − xi) + εi i = 1, . . . , 2n,

where xi is an indicator variable equal to 1 for the population with mean θ1

and 0 for the population with mean θ1θ2, and with error terms εi independently
distributed as N(0, σ2). Interest centers on the parameter θ2 which represents
the ratio of the two population means.

The exact relative overlap between the Wald and the profile likelihood-based
confidence intervals for the parameter θ2 can be obtained directly from the ex-
plicit expressions for these intervals derived by Cook and Witmer (1985). Specif-
ically this overlap is given by




√
rθ̂2+(1−r)

√
1+θ̂2

2+
√

1+θ̂2
2−r

−√
rθ̂2+(1−r)

√
1+θ̂2

2+
√

1+θ̂2
2−r

for θ̂2 < −
√

r
4−r ,

(1−r)
√

1+θ̂2
2√

1+θ̂2
2−r

for −
√

r
4−r < θ̂2 <

√
r

4−r ,

−√
rθ̂2+(1−r)

√
1+θ̂2

2+
√

1+θ̂2
2−r

√
rθ̂2+(1−r)

√
1+θ̂2

2+
√

1+θ̂2
2−r

for θ̂2 >
√

r
4−r ,



KURTOSIS AND CURVATURE MEASURES 565

where r = (c2σ2)/(nθ̂2
1), with c an appropriate critical value and θ̂1 and θ̂2

the maximum likelihood estimators of θ1 and θ2, respectively. Note that the
confidence limits associated with the profile likelihood only define an interval
provided r < 1. From these results it is straightforward to calculate values of θ̂1

and θ̂2 for which the exact relative overlap is equal to a given value p. Note in
particular that θ̂1 = ±[σc/(n(1 − p2))1/2] when θ̂2 = 0 and that θ̂2 approaches
plus or minus infinity as θ̂1 approaches [(1+p)+(9 − 14p + 9p2)1/2]/(4(1 − p))×
(σc)/n1/2 from below, and minus that value from above. For the case with
σ = 0.1, n = 10 and c = 2, plots of the values of θ̂1 and θ̂2 for which the exact
relative overlap is 80%, 85%, 90% and 95% are shown as solid lines in Figure 2.
It is interesting to note that, in accord with the findings of Clarke (1987), the
Wald confidence interval does not provide a good approximation to the profile
likelihood-based interval for small values of the parameter θ1.

Figure 2. Values of the (θ̂1, θ̂2)-pairs for the Fieller-Creasy problem with
c = 2, σ = 0.1 and n = 10 for which the exact relative overlap (solid
lines) and the approximate relative overlap based on the rules of thumb for
skewness and kurtosis (dotted lines) are 80%, 85%, 90% and 95%.

The second-order approximations to the scaled coefficient of skewness and
the scaled excess kurtosis for the parameter θ2, written in terms of the maximum
likelihood estimates θ̂1 and θ̂2, follow immediately from the expressions

Γ = − 2θ2

θ1

√
n(1 + θ2

2)
and β =

1 + 2θ2
2

nθ2
1(1 + θ2

2)
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derived by Clarke (1987) and evaluated at θ̂1 and θ̂2, and are given by

γ1c =
6θ̂2

√
r√

1 + θ̂2
2

and γ2c =
12r(1 + 6θ̂2

2)
(1 + θ̂2

2)
,

respectively. The approximation to the relative overlap described in Section 5.1,
and based on Clarke’s approximation to the likelihood-based confidence limits,
can then be found by substituting these expressions for γ1c and γ2c into the
appropriate formulae in Table 2. Note that in this example the order of the
limits WPPW cannot occur and, in accord with this, β > 0. The exact and the
approximate relative overlaps of the Wald and profile likelihood-based confidence
intervals were examined for a large range of possible values of r and θ̂2, and
thus of problem settings, and clearly indicated that the approximation to the
relative overlap consistently overestimates the true overlap, and also that this
approximation was excellent for overlap values greater than 95%. The latter
observation reinforces the appropriateness of the rules of thumb based on relative
overlap and developed in Section 5.1.

The excess kurtosis for this example is non-negative and the rules of thumb
|γ1c| ≤ 6(1 − p) and γ2c ≤ (24(1 − p))/p developed in Section 5.1 can therefore
be reformulated in terms of θ̂1 and θ̂2 as

θ̂2
2 ≤ θ̂2

1

(a2
s − θ̂2

1)
where as =

cσ√
n(1 − p)

, (7.1)

θ̂2
2 ≤ θ̂2

1 − a2
k

(6a2
k − θ̂2

1)
where ak =

cσ
√

p√
2n(1 − p)

, (7.2)

respectively. Note that for equality in (7.1), θ̂2 = 0 when θ̂1 = 0, and θ̂2 → ±∞
as θ̂1 → ±as, and note also that for equality in (7.2), θ̂1 = ±ak when θ̂2 = 0
and θ̂2 → ±∞ as θ̂1 → ±61/2ak. For the case where σ = 0.1, n = 10 and c = 2,
plots for which these rules of thumb for p values of 80%, 85%, 90% and 95% hold
simultaneously are presented as dotted lines in Figure 2. The similarity in the
patterns for exact and approximate relative overlaps exhibited in that figure is
striking, indicating that the rule of thumb based simultaneously on skewness and
kurtosis performs well in this particular case. It is also interesting to examine
the impact of skewness and kurtosis separately. To this end, plots of the values
of θ̂1 and θ̂2 for which the rules of thumb based on skewness and kurtosis with
p = 80% hold separately are shown in Figure 3. From these it is clear that the
rules of thumb for scaled skewness and kurtosis do not coincide and indeed that
neither measure, singly, provides an adequate indicator of relative overlap.
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Figure 3. Values of the (θ̂1, θ̂2)-pairs for the Fieller-Creasy problem with
c = 2, σ = 0.1 and n = 10 for which the equalities in (7.2) and (7.3) relating
to scaled skewness (solid lines) and kurtosis (dashed lines) for a relative
overlap of ρ = 95% are satisfied.

Finally it is straightforward to show that the scaled total subset curvature
for the parameter θ2 is given by (2σc)/(|θ1|n1/2) = 2r1/2. Thus, for a fixed value
of θ1, this measure remains constant regardless of the value of θ2. However, since
exact relative overlap varies as θ2 changes, it is clear that total subset curvature
is unreliable as a predictor of that overlap. Thus, for example, for r = 0.1 the
exact relative overlap is equal to 94.87% when θ2 = 0 but approaches 71.46% for
very large values of |θ2|, whereas the total subset curvature under each of these
settings is the same.

8. Conclusions

One of the main features of this paper is the derivation of an algebraic expres-
sion for the second-order approximation to kurtosis for the least squares estimate
of an individual parameter in a nonlinear regression model. This result comple-
ments those already established for the bias and the skewness associated with
such estimates (Box (1971) and Hougaard (1985)). Furthermore the expression
for approximate kurtosis is immediately useful in that it is readily and rapidly
computed, in contrast to estimates obtained by simulation (Ratkowsky (1983)).
As an aside, it is interesting to note that the second-order approximations to
skewness and kurtosis are shown to be closely related to a broad range of mea-
sures of curvature for individual parameters through certain building block terms
taken from Clarke (1987).
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A second feature of the present study is the formulation of rules of thumb for
assessing the closeness or otherwise of Wald and profile likelihood-based confi-
dence intervals and, more broadly, the nonlinearity associated with an individual
parameter of a nonlinear regression model. The rules are derived in terms of
approximate skewness and kurtosis and are translated into simple rules relat-
ing to those measures. The rules of thumb for appraising the disparity between
Wald and likelihood-based confidence intervals for an individual parameter are
summarized in Tables 2 and 3 and are directed towards the practitioner who has
available a Wald interval and is uncertain as to whether or not to calculate the
interval based on the profile likelihood. The rules of thumb for appraising the
nonlinearity associated with an individual parameter, and hence the correspond-
ing measures of skewness and kurtosis, are presented in Section 5.1 but it should
be noted that these are somewhat tentative.

A number of examples are given in this paper and many are of interest in
their own right. From these it is clear that the rules of thumb developed in the
present study perform well but that there are two important caveats. First the
intrinsic nonlinearity associated with the nonlinear regression model of interest
should be negligible, and second, the chosen model should be appropriate for
and provide a good fit to the data. In other words, spurious results relating to
curvature may well be obtained if either of these two conditions fails to hold (van
Ewijk and Hoekstra (1994)).

A particular drawback to the calculation of measures of curvature for nonlin-
ear regression models, and of the second-order approximations to skewness and
excess kurtosis in particular, is the tedious algebra needed to obtain the requisite
first, second and third-order derivatives of the expected response with respect to
the parameters. This problem is to some extent alleviated today by the ready
availability of symbolic algebra packages which can in turn be linked to a range of
statistical and programming languages, and also by routines for calculating the
required derivatives numerically. However for the practitioner the computations
still remain time-consuming and tedious. Thus work is currently in progress to
develop quick and easy-to-use software for calculating a comprehensive suite of
curvature and related measures for any nonlinear regression model and for the
individual parameters within such a model.
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Appendix. Expectations for Quadratic Forms

Moments of quadratic forms in the variable z ∼ N(0, σ2I) can be derived rou-
tinely from the cumulant generating function and, in turn, used to obtain expec-
tations of products of those forms. Specifically, consider the two quadratic forms
q1 = zT Q1z and q2 = zT Q2z. Then E[(q1 −E[q1])(q2 −E[q2])2] = 8 σ6 tr(Q1Q

2
2)

and thus

E[q1(q2 − E[q2])2] = E[q1]E[(q2 − E[q2])2] + 8σ6tr(Q1Q
2
2). (A.1)

Consider also the three quadratic forms q1, q2 and q3 = zT Q3z. Then

E[(q1 − E[q1])(q2 − E[q2])(q3 − E[q3])] = 4 σ6{tr(Q1Q2Q3) + tr(Q1Q3Q2)}

and thus

E(q1q2q3) = 4 σ6{tr(Q1Q2Q3) + tr(Q1Q3Q2)} + E[q1]Cov(q2, q3) +

E[q2]Cov(q1, q3) + E[q3]Cov(q1, q2) + E[q1]E[q2]E[q3].

It now follows that

E[(aT z)3(bT z)(zT Qz)] = E[(zT aaT z)(zT abT z)(zT Qz)]

= 3σ6{2(aT a)(aT Qb) + (aT a)(aT b)trQ + 2(aT b)(aT Qa)}

and hence, since E[(aT z)2] = σ2(aT a) and E[(aT z)(bT z)(zT Qz)] = σ4{2aT Qb +
(aT b)trQ}, that

E[(aT z)3(bT z)(zT Qz)] = 3E[(aT z)2]E[(aT z)(bT z)(zT Qz)] + 6σ6(aT b)(aT Qa).
(A.2)
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