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ABSTRACT: This paper points out that so-called optimal designs for non­

linear regression models are often limited when the assumed model function 

is not known with complete certainty and argues that robust designs - near 

optimal designs but with extra support points - can be used to also test for 

lack of fit of the model function. A simple robust design strategy - wlrich 

has been implemented with a popular software package - is also presented 

and illustrated. 
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1 Introduction 

Researchers often find that nonlinear regression models are more applica­
ble for modelling various biological or chemical processes than are linear 
ones since they tend to fit the data well and the models and model pa­
rameters are more scientifically meaningful. These researchers are often in 
a position of obtaining optimal or near-optimal designs for a given nonlin­
ear model. A common shortcoming of most optimal designs for nonlinear 
models used in practical settings, though, is that these designs often have 
only p support points where p is the number of model parameters. Such 
designs may present no problem when the model function is assumed to 
be known with complete certainty, but researchers typically desire designs 
which are near-optimal for the assumed model but which contain "extra" 
design points that can be used to test for model adequacy. This paper in­
troduces and illustrates such a "robust" design procedure which also has 
been implemented using a popular software package. 
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2 Optimal Design Theory 

The design problem for the nonlinear model 

'!Ii = ." (xt, 0) +Ci i= 1, ...,n (1) 

typically involves choosing an n-point design, {, to estimate some function 
of the p-dimensional parameter vector, 8, with high efficiency. Here { can 
be written as 

{= { XI,X2 ....,Xn } 

Wl.W2, "',Wn 

where the design vectors (or points). XI, Xz, ... , x,., are elements of the 
designs space il and are not necessarily distinct, and the associated weights, 
Wi. Wz, ...,w,.;" are non-negative real numbers that sum to one. Alternatively, 
ecan be expressed in terms of its m (m :5 n) distinct support points 81, 

82 ••.•• 8 m, and their associated weights. A}, A2, .'" Am. 
When the residuals in (1) are uncorrelated Gaussian random variables with 
zero mean and constant variance (without loss of generality taken to equal 
one), the Fisher information matrix is given by M({,O) = yTnv. where 
V is the nxp Jacobian ofl1 and n =diag{wI, W2, .•• , wn }, and the corre­
sponding variance function of 11 for the design eis given by 

d(x I: 0) =01J(x) M- 1(I: 0) 01J(x) (2), .. , 01fI' .. , 00 

where 01J(x) / 00 is of dimension px 1 and a generalized inverse is used 
whenever M is singular. 
Optimal designs typically minimize some convex function of M-l. For ex­
ample, designs which minimize the determinant IM-l (e, 0°) Iare called lo­
cally D-optimal, and those that minimize the maximum (over all x E ill of 
the -variance function in (2) are called locally G-optimal; the term " locally" 
is used here to emphasize that the design is based on an initial estimate 
of the parameter vector, 0°. Further, the General Equivalence Theorem of 
Kiefer and Wolfowitz (1960) establishes the equivalence between locally D­
and G-optimal designs; a corollary to this theorem states that the variance 
function in (2) evaluated using a D-optimal design achieves its maximum 
value at the support points of this design. 
To illustrate, consider the two-parameter intermediate product model func­
tion (IP2). 

1] (x, 01, O2) =~O (e-BllJ< _ e-B11J<),° 
. 171 - 2 

and the initial parameter estimates 0i =0.70 and 01=0.20. In this case the 
locally D-optimal design, {D, associates the weight A=t with each of the 
support points SI =1.229 and S2 =6.858. D-optimality of this design can be 
established by noting that the corresponding variance function, d(x,eD,OO), 
reaches its maximum value at x = 1.229.and x = 6.858. An algorithm is 
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presented in O'Brien (1995) which uses the SAS(R) software package and 
the results of the General Equivalence Theorem to obtain and verify locally 
D-optimaI designs. 
For the previous example, note that the number of support points of the D­
optimal design is equal to the number of parameters (2). Thus, regardless 
of the final sample size chosen, half of the observations are to be taken at x 
= 1.229 and the other half at x = 6.858. Although this design is "optimal" 
for estimating the two parameters of the IP2 model function, it provides 
no opportunity to check the validity of the assumed model function. The 
design strategy introduced below is suggested for situations where robust 
designs, or designs with "extra" support points, are desired. 

3 Lack of Fit in Regression Models 

When replicates are taken at at least one of a design's support points, lack 
of fit of the assumed model function (to the means model) can be tested 
using the F -statistic 

SSLF I(m p) 
Fm-p,n-m == SSP E I (n m) 

where SSLF and SSPE are the lack-of-fit and pure-error sums of squares, 
respectively, m is the number of support points, n is the final sample size 
and p is the number of model parameters. This statistic may be used to test 
lack of fit for nonlinear models when intrinsic curvature is negligible, and 
can be adjusted using the methods given in Hamilton and Wiens (1987) 
when it is not. Obviously, if the number of support points of a given design 
is equal to the number of model parameters, no test for inadequacy of the 
assumed model can be made using this test. 
For a given final sample size (n) and model function with p parameters, 
we are interested in determining (in some sense) the optimal number of 
support points to maximize the power of this lack-of-fit teSt. One such 
measure is to choose m to minimize the quantile F statistic, F a,m-p,n-m, 
for, say, 0' 0.05. Interestingly, our preliminary research has shown that, at 
least when n > 2p, this "optimal" m is approximately n~2p. For example, 
if a sample size of n = 20 is used to fit the IP2 model function (where p 
= 2), then indeed F.o5,m-p,n-m is minimized for m = 8. The main point 
here is that to test for lack of fit of the assumed model function, we usually 
wish to choose designs with more than p support points. 

4 A Robust Design Strategy 

Strategies to obtain robust designs, or designs with"extra" support points, 
include Bayesian D-optimalitydiscussed in Chaloner and Larntz (1989), Q­
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optimality introduced in O'Brien (1992) and the nesting design approach 
given in O'Brien (1994). As none of methods are intended to obtain designs 
to test for general departures ofthe assumed model function, we recommend 
the following strategy be used in these situations. 

4.1 The Algorithm 

• 	 Find the (locally) D-optimal design, €D. Often this will have only p 
support points (see Gaffke, 1987), and the following assumes that this 
is indeed the case. 

• Choose the number "de" between 0 and 1 (typically around .90), and 
find all (t) values of x such that 

(3) 

• 	Choose as a final design rl replicates of the p support points of €v 
and r2 replicates of the t points obtained from the previous step. 

4.2 Justification 

Our motivation for suggesting the above algorithm is the following. Let ~o: 
represent a one-point design putting all weight at the support point x. Then 
the design ~N = ;;h€D + P~1 ~o: associates the weight P;l with each of s}, 
S2, ... ,sp (the support points of ~v) and x. One measure of the "distance" 
between ~D and ~N is the D-efficiency (Atkinson and Donev, 1992) 

which, in the current case, is equal to ph [1 + d(x,~v, eO) / p]l fp 
• Solving 

this expression for d(X'~D,8°) in terms of"de" yields the expression in (3). 

4.3 Implementation 

Programs to obtain and verify D-optimal designs for nonlinear regression 
models and to graph the corresponding variance function using the SAS(R) 
software package are given in O'Brien (1994). These programs have also 
been adapted to obtain the t values of x which satisfy (3) for a given D­
efficiency, "de" . Also, these programs (available from the author) have also 
been extended to incorporate Bayesian D-optimality, subset D-optimality, 
and heteroskedastic error structures. 



Optimal Design and Lack of Fit in Nonlinear Regression Models 205 

4.4 An Example 

By way of illustration, consider again the IP2 model function with initial 
parameter estimates Or =0.70 and O~ =0.20. Taking de = 0.90, we include 
those values of X such that the corresponding variance function equals 1.645; 
this yields the t =4 values x = 0.761, 1.909,4.890, and 9.366. The final 
design would then consist of rl replicates of the D-optimal support points 
1.229 and 6.858 and ra replicates of the check points 0.761, 1.909, 4.890, 
and 9.366. This design has the advantage of having" extra" support points 
to test for model mis-specification, yet in being "near optimal" in the sense 
of having a reasonably high final efficiency. 

4.5 Final Efficiencies 

Denote 

where Xl, Xa •.•. ,X, are the t points that satisfy (3) for given values of" de" 
and p, and note that M(~z) = tv;v"" where Vz is the txp Jacobian 
matrix evaluated at Xl. X2, ... ,Xt. Then the final D-efficiency of the design 
with rl replicates of the D-optimal support points and r2 replicates of the 
support points of ~'" is given by 

(4) 

where D(x'~D,8°) =VzM-l(~D)V; is the corresponding variance-covar­
iance matrix junction (c.r., equation (2)). Note that for the IP2 model 
function and the six-point design comprising one replicate of €D and one 
replicate of €z, the final D-efficiency is 88%, and this number can be in­
creased (up to 100%) by increasing the number of observations chosen at 
the support points of €D. 

5 Discussion 

The above robust design strategy bas been used for sixteen data sets and 
model functions used in practical settings including the four-parameter 
log-logistic model used by V~lund (1978) to model a process with one 
explanatory variable and a five-parameter growth model used by Gerig, et 
at. (1989) to detect synergy of two chemicals. In all settings, near-optimal 
designs were easily obtained with the SAS software package, a package 
commonly used by practitioners. The key to this design procedure is its 
simplicity for obtaining near-optimal designs with extra support points for 
situations where the model function is not known with complete certainty. 



· 206 Timothy E. O'Brien 

References 

Atkinson, A.C. and Donev, A.N. (1992). Optimum E:cperimental Designs. 
Oxford: Clarendon Press. 

Chaloner, K. and Larntz, K. (1989). Optimal Bayesian design applied to 
logistic regression experiments. J. Stat. Plann. In!, 21, 191-208. 

Gaffke, N. (1987). On D-optimality of exact linear regression designs with 
minimum support. J. Stat. Plann. In!, 15, 189-204. 

Gerig, T.M., Blum, U., Meier, K. (1989). Statistical analysis of the joint 
inhibitory action of similar compounds. J. Chern. Ecol., 15, 2403­
2412. 

Hamilton, D., Wiens, D. (1987). Correction factors for F ratios in nonlin­
ear regression. Biometrika, 74,423-5. 

Kiefer, J., Wolfowitz, J. (1960). The equivalence of two extremum prob­
lems. Can. J. Math., 12,363-6. 

O'Brien, T.E. (1992). A note on quadratic designs for nonlinear regression 
models. Biometrika, 79,847-9. 

O'Brien, T.E. (1994). A new robust design strategy for sigmoidal models 
based on model nesting. In Dutter, R. and Grossmann, W., eds., 
Proceedings in Computational Statistics: Compstat, 1994, Heidelberg: 
Physic a-Verlag , 97-102. 

O'Brien, T.E. (1995). Obtaining and verifying optimal designs for nonlin­
ear regression models using SAS software. To appear in Proceedings 
of SUGI 20. 

V¢lund, A. (1978). Application of the four-parameter logistic model to 
bioassay: comparison with slope ratio and parallel line models. Bio­
metrics, 34, 357-65. 


	sm1
	sm2
	sm3
	sm4
	sm5
	sm6

