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We present and illustrate the methodology to calculate curvature measures for
continuous designs, and extend design criteria to incorporate continuous designs.
These design algorithms include quadratic design procedures, a subset design
criterion, a second-order mean-square error design criterion, and a marginal cur-
vature design methodology. A discussion of confidence intervals is also provided
for continuous designs.

1. Introduction

When researchers have a given nonlinear regression model in mind to describe a
specific process, they typically seek an experimental design to efficiently estimate
the p model parameters with only negligible curvature. An additional requirement
is usually that the design provide the researcher with the ability to test for the ade-
quacy of the assumed model. Measures of curvature and nonlinearity are developed
in [Beale 1960; Bates and Watts 1980; Ratkowsky 1983; Clarke 1987]; additional
results and references are given in [Bates and Watts 1988; Seber and Wild 1989;
Haines et al. 2004]. These measures assume that the chosen design has discrete
weights, meaning that it is assumed that a sample size is fixed a priori, and that
some fraction of these points is chosen at each of the design support points.

This paper argues that so-called continuous designs should instead be sought,
and provides and demonstrates the means of calculating curvature measures for
these designs. A by-product of this result is an extension to allow for continuous
designs of the second-order mean-square error (MSE) design criterion in [Clarke
and Haines 1995], the marginal curvature design strategy in [O’Brien 2006], and
the second-order volume design criterion in [O’Brien 1992].
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Furthermore, most optimal design procedures provide designs with only p sup-
port points regardless of the sample size. Depending on the dispersion of the
assumed prior distribution, one exception is the Bayesian procedures introduced
in [Chaloner and Larntz 1989; Atkinson and Donev 1992]. OBrien [1992] shows
how discrete (p+1)-point designs with reduced curvature could be obtained. In
this article, we further extend this volume design strategy to incorporate continuous
and larger discrete designs; these designs are recommended since they can also be
used to test for lack-of-fit of the assumed model.

2. Notation and terminology

A general n-point design (measure) ξ can be written as

ξ =

{
s1, . . . , sr

λ1, . . . , λr

}
.

Here, the r ≤ n support points, s1, s2, . . . , sr are elements of the design space X ,
and the associated design weights — the λ’s — are nonnegative real numbers which
sum to one. When the support points are chosen from a discrete grid, we call this a
discrete-point design; otherwise, it is a continuous-point design. Lattice and cyclic
designs provide examples of the former type, whereas designs for dose-response
curves or response surfaces are usually of the continuous variety. In addition,
whenever the design weights are rational numbers proportional to 1/n, we call the
design a rational-mass (or rational-weight) design; otherwise, it is a continuous-
mass design. Thus, even though ξ has n design points (which are not necessarily
distinct), it may have only r distinct support points. Regardless of whether ξ is
a continuous- or rational-mass design, nλi is to be thought of as the number of
observations taken at the experimental level si .

In regression settings, we advocate here that continuous point-continuous mass
designs be obtained as a general rule-of-thumb, at least as a starting point; these
designs can later be rounded to practical designs using the methodology given in
[Pukelsheim and Rieder 1992]. For simplicity, we refer to these designs as contin-
uous designs for the remainder of this paper. We encourage the use of continuous
designs for two reasons. First, for some design criteria, optimality of the resulting
design can be verified using a variation of the general equivalence theorem. This
important result, first developed for linear models in [Kiefer and Wolfowitz 1960],
and extended to nonlinear models in [White 1973], is illustrated for nonlinear
models in [Haines 1992; O’Brien and Funk 2003]; important extensions to these
original results are given in [Pukelsheim 1993; Atkinson and Haines 1996; Dette
and O’Brien 1999]. This verification that the derived design is indeed optimal
can be achieved by obtaining a graph of the corresponding variance function and
noting whether or not this graph lies below a certain horizontal line. Since the



CURVATURE MEASURES FOR NONLINEAR REGRESSION MODELS 319

theorem is valid only for continuous designs (with continuous weights), verification
of optimality of other designs is not possible in general.

Our second reason for preferring continuous designs is to expedite our search
for an optimal design strategy in a given setting. For example, using the model
function η(x, θ)= 1−e−θx and a specific prior distribution for θ , Atkinson [1988]
provides discrete Bayesian D-optimal designs for sample sizes of n = 1, 2, and
3. The reported designs are {12}, {7, 27}, and {8, 8, 52}, respectively. Instead of
continuing this trend of finding designs for larger sample sizes, we simply note
that the continuous Bayesian D-optimal design associates the weight λ1 = 0.890
with the point s1 = 9.05 and the weight λ2 = 0.110 with the point s2 = 120.1.
Thus, as we continue the sequence above up to the sample size n = 9, the first
eight of these points would be placed nearer and nearer to s1 = 9.05, whereas
the last point approaches s2= 120.1. Thus, the strategy of first seeking continuous
optimal designs gives us a clearer picture at the outset of what is required to achieve
optimality.

3. Curvature measures for continuous designs

Under the usual assumption of uncorrelated Gaussian errors with zero mean and
constant variance σ 2 (without loss of generality taken to equal one), the Fisher
information per observation is given by

M(ξ, θ)=

r∑
k=1

λk
∂η(sk)
∂θ

∂η(sk)
∂θT = V T

r 3Vr ,

where Vr is the r × p Jacobian of η associated with ξ with kth row equal to
∂η(sk)/∂θ

T , and 3= diag{λ1, . . . , λr }. It follows that the total information asso-
ciated with an n-point design ξ is given by

nM(ξ, θ)=

r∑
k=1

nλk
∂η(sk)
∂θ

∂η(sk)
∂θT =

r∑
k=1

∂ηw(sk)
∂θ

∂ηw(sk)
∂θT = V T

w Vw.

In this expression,
ηw(sk)=

√
nλkη(sk) (1)

is the weighted model function where the model weights correspond to the “number
of observations” taken at the point sk , and Vw is the r× p Jacobian of ηw with kth
row equal to ∂ηw(sk)/∂θ

T . Thus, for continuous designs with n observations and
r support points, and for second-order curvature, we point out that variance and
volume measures should be based on

Vw =
∂ηw(s, θ)
∂θ

= n1/231/2Vr , Ww =
∂2ηw(s, θ)
∂θ∂θT = n1/2

[31/2
][Wr ]. (2)
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Here 31/2
= diag{λ1/2

1 , . . . , λ
1/2
r } and square bracket multiplication of arrays

is defined in [Seber and Wild 1989, Appendix B]. The r × p matrix Vw plays
the role of the Jacobian matrix and the r × p × p array Ww that of the second
derivative array; since the marginal curvature measures in [Clarke 1987] require
third derivatives, the r× p× p× p array of third derivatives is defined analogously.

Example 1. Consider the Fieller–Creasy problem highlighted in [Cook and Wit-
mer 1985; Clarke 1987; Seber and Wild 1989; Haines et al. 2004], in which the
relevant nonlinear model function is η(x, θ1, θ2) = θ1x + θ1θ2(1− x), with x = 1
for group A and x = 0 for group B. Interest lies in the parameter θ2, which is the
ratio of the group B mean over the group A mean. Here, we take n A = nλ and
nB = n(1−λ) for λ between 0 and 1; λ is thus the percentage of the experimental
units assigned to group A. So as to adjust Wald confidence intervals to bring them
more in line with likelihood intervals, [Clarke 1987] introduces marginal curvature
measures 0 and β, where 0 assesses skewness of the interval and β (along with 0)
quantifies excessive kurtosis. Here, 0=β=0 is an indication of no nonlinearity, or
exact coincidence between the two types of confidence intervals, as this is indeed
the case for linear models. For the equal-weight case (λ = 1/2), these 0 and β
expressions for θ2 are given in [Haines et al. 2004, page 565]; extensions to the
general case are given by the expressions

0 =
−2θ2φ

1/2

θ1
√

n A(1+φθ2
2 )

and β =
1+2φθ2

2
n Aθ

2
1 (1+φθ

2
2 )
,

where φ = nB/n A = (1− λ)/λ. For example, when n = n A+ nB = 20, θ1 = 0.10
and θ2=1, the equal-weight case results in 0=−4.4721 and β=15.0. In contrast,
when n A= 19 and nB = 1 (so λ= 0.95), 0=−1.0260 and β= 5.0263. This reduc-
tion in both 0 and β means that the Wald and likelihood intervals for θ2 coincide
to a greater degree in the latter situation than in the former (equal-weight) one.

Of course, both0 and β for θ1 are zero here since this parameter enters the model
function a linear manner, so the two intervals will coincide for this parameter.

4. Applications to optimal design

An important benefit of extending the definitions of curvature measures to incor-
porate continuous designs is that more efficient designs can often then be obtained.
Important examples include finding continuous designs for the Q-optimality, sub-
set and MSE criteria, but first we examine discrete Q-optimal designs.

4.1. Discrete Q-optimal designs. For nonlinear models, we have from [Hamilton
and Watts 1985] the second-order volume

ν = c|V T
0 V0|

−1/2
|D0|

−1/2
{1+ k2 tr(D−1

0 M0)}, (3)
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as an approximation to the likelihood-based confidence region for the parameter
vector θ . In this expression, c and k are constants with respect to the chosen design,
matrices are evaluated at some initial guess θ0 for θ . Also, V0= V (θ0) is the n× p
Jacobian matrix whereas M0 and D0 = Ip − B0 are associated with parameter-
effects and intrinsic curvature, respectively. Whereas Hamilton and Watts [1985]
obtain only designs with n = p, O’Brien [1992] shows how designs with p + 1
support points can be obtained to minimize the volume in (3), designs which are
called discrete Q-optimal designs.

Specifically, the Q R decomposition of V0 is

V0 = Q0 R0 = [U0 | N0]R0 = U0 L−1
0 ,

so that the columns of U0 form an orthonormal basis for the tangent plane to η(θ) at
θ = θ0, and the columns of N0 form an orthonormal basis for the space orthogonal
to this tangent plane. Since the residual vector is always orthogonal to the tangent
plane at the maximum likelihood estimate, we can write

ε0 = N0α0, (4)

where α0 is a vector of dimension (n− p)×1. Considering only the case n= p+1,
O’Brien [1992] chooses the scalar α0 equal to σ0 since in general the expected
squared length

E(εT
0 ε0)≈ E(εT ε)− E[(θ − θ0)

T RT
0 R0(θ − θ0)] ≈ nσ 2

− pσ 2. (5)

We extend this result here for discrete designs with n = p+ s and s ≥ 2.
Whenever s = 2 (i.e., n = p+ 2), we can write α0 =

√
2σ0

(sinφ
cosφ

)
, for some φ

between 0 and π/2. With this choice for α0, we keep its expected length identical
to that of ε0 by (4) and (5) since N0 is an orthonormal matrix. With this choice
of ε0, we can calculate the volume in (3) — subject to knowledge of φ. We thus
define a (p+2)-point to be locally Q-optimal if it minimizes the expected volume

E[v(φ)] =
∫ π/2

0
ν(φ)dφ. (6)

By extension, when n = p+ s for s ≥ 3, we use hyperspherical coordinates for the
s-vector α0:

α0 =
√

sσ0


sinφ1 sinφ2 sinφ3 · · · sinφs−1

cosφ1 sinφ2 sinφ3 · · · sinφs−1

cosφ2 sinφ3 · · · sinφs−1
...

cosφs−1

 , (7)
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for 0 ≤ ϕ1, ϕ2, . . . , ϕs−1 ≤ π/2. In this case, a discrete locally Q-optimal design
minimizes the expected volume∫ π/2

0
· · ·

∫ π/2

0
ν(φ1, . . . , φs−1)dφ1 · · · dφs−1,

for ν = ν(ϕ1, ϕ2, . . . , ϕs−1) given in (3), with ε0 in (4) and α0 defined in (7). We
illustrate this design strategy with the following example.

Example 2. To illustrate, consider the two-parameter intermediate product (IP2)
model function

η(x, θ)= θ1
θ1−θ2

{exp(−θ2x)− exp(−θ1x)}, (8)

for θ1 > θ2 > 0 and x > 0. This model function is used extensively in chemical
kinetics and pharmacology. Using the initial parameter values θT

0 = (0.7, 0.2) and
σ0 = 0.1, the 2-point discrete locally Q-optimal design takes one observation at
each of s1 = 1.04 and s2 = 5.59, the 3-point discrete locally Q-optimal design
takes one observation at each of s1 = 1.02, s2 = 4.72, and s3 = 6.81, and the 4-
point discrete locally Q-optimal design takes one observation at the points s1 =

1.00, s2 = 1.23, s3 = 5.35, and s4 = 6.73. This last design is obtained using
the expected volume design expression given in (6). Table 1 contains the design
points for the 2-point, 3-point and 4-point discrete locally Q-optimal designs for
the intermediate product (IP2) function and the initial estimates θT

0 = (0.7, 0.2)
and σ0 = 0, 0.05, 0.10, 0.15, and 0.20.

Not unexpectedly, the discrete Q-optimal designs for σ0 = 0, which coincide
exactly with the local D-optimal designs, match exactly those given in [Box and
Lucas 1959]. What may be surprising, though, is that for this example, when-
ever discrete Q-optimal designs were sought with five or more support points, the
resulting designs had only four support points. Similar situations were observed

2-pt design 3-pt design 4-pt design
σ s1 s2 s1 s2 s3 s1 s2 s3 s4

0.00 1.23 6.86 1.23 6.86 6.86 1.23 1.23 6.86 6.86
0.05 1.15 6.36 1.15 5.79 7.11 1.12 1.26 6.18 6.97
0.10 1.04 5.59 1.02 4.72 6.81 1.00 1.23 5.35 6.72
0.15 0.94 4.88 0.91 4.24 6.24 0.90 1.18 4.74 6.34
0.20 0.81 4.05 0.82 3.92 5.52 0.82 1.13 4.34 5.91

Table 1. Design points associated with 2-, 3-, and 4-point discrete
locally Q-optimal designs for the IP2 model function.
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for other model functions. Thus, we conclude that in general, this discrete design
strategy often produces designs with one or two extra design points.

4.2. Continuous Q-optimal designs. In (2), we showed how the first-order Jaco-
bian matrix and second-order derivative array are extended to allow for continuous
designs, and these are easily used in the calculation of the second-order volume
approximation given in (3); designs which minimize this volume are called con-
tinuous Q-optimal designs.

Example 2 (continued). To illustrate, consider again the two-parameter interme-
diate product model given in expression (8) again with initial parameter estimates
θT

0 = (0.7, 0.2) and σ0 = 0.1. In this case, the continuous locally Q-optimal de-
sign with r = 3 points associates the weights λ = 0.46, 0.28, 0.26 with the points
s = 1.06, 5.02, 6.73, respectively. This latter design represents a 3.9% volume
reduction in terms of (3) relative to the discrete 3-point Q-optimal design given
in Section 4.1, and is therefore preferred. Table 2 contains the continuous locally
Q-optimal designs with n= 3 for this model for σ0= 0, 0.05, 0.10, 0.15, and 0.20.
As pointed out above, techniques to obtain practical designs from design measures
are discussed in [Pukelsheim and Rieder 1992].

In analogous manner to the performance of this model function with the discrete
5-point design criterion discussed above, continuous locally Q-optimal designs for
n > 3 collapsed to those given in Table 2 for this model function.

Of course, this volume design strategy does not always yield designs with ex-
tra support points. One obvious counterexample is the Fieller–Creasy problem
in which the dummy value takes on only two values — one for each of the two

σ ξ

0.00 s = 1.23 6.86
λ= 0.50 0.50

0.05 s = 1.17 4.79 6.62
λ= 0.49 0.04 0.47

0.10 s = 1.06 5.02 6.78
λ= 0.46 0.28 0.26

0.15 s = 0.96 4.69 7.84
λ= 0.43 0.47 0.10

0.20 s = 0.82 4.06 10.48
λ= 0.37 0.58 0.05

Table 2. Continuous locally Q-optimal designs for the IP2 model function.
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groups. Nonetheless, use of the criterion does reemphasize the importance of using
continuous designs.

Example 1 (continued). For the Fieller-Creasy exercise, recall that λ is the pro-
portion taken from group A, and the remaining 1−λ is the proportion taken from
group B. It can be readily shown that since n = p here, D0 is identity matrix, I2,
the volume in (3) is proportional to

λ−1/2(1− λ)−1/2
{1+ z/λ}, (9)

where

z =
σ 2χ2

2,1−α

4nθ2
1

.

Since the D-optimal design is obtained by taking σ = 0 in expression (9), this
design is thus the equal-weight one; this design ignores curvature and minimizes
only the generalized variance of θ . When σ > 0, the Q-optimal design is obtained
by choosing

λ∗ = {1− 4z+ (16z2
+ 16z+ 1)1/2}/4.

Contours of this optimal choice of the weight for group A are plotted in Figure 1
as a function of levels of noise = σ 2/n and θ1.
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Figure 1. Contour plots of optimal lambda as a function of Noise
= σ 2/n and θ1 for the Fieller–Creasy problem. Contour plots are
of the form noise = cλθ2

1 , where cλ is a constant depending upon
λ. The horizontal line noise= 0 corresponds to λ= 1/2, whereas
the vertical line θ1 = 0 corresponds to λ= 3/4.
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In general, λ∗ increases (from its lower bound of 1/2) with the noise level, and
its maximum value is 3/4. This result is in line with the observation in Section
3 that the marginal curvature measures decrease as λ increases. Nevertheless, for
values of λ above 3/4, the generalized variance becomes exceedingly large.

4.3. Continuous optimal designs for parameter subsets. When the p-dimension-
al parameter vector is written θT

= (θT
1 , θ

T
2 ) in situations where, without loss of

generality, the p1-vector θ1 is the parameter (subset) vector of interest and the p2-
vector θ2 are nuisance parameters, so that p= p1+ p2, then an optimal design can
be sought using a subset design criteria. For example, Hill and Hunter [1974] have
developed discrete subset D-optimal designs and given geometric interpretations
of these designs. Atkinson and Donev [1992] extended this criterion to allow for
continuous designs but did not give the geometric results; we provide them here.

Geometric aspects of continuous Ds(θ1)-optimal designs. We partition the r × p
Jacobian Vr as

Vr = [V1 | V2], (10)

so V1 is r× p1 and corresponds to θ1 and V2 is r× p2 and corresponds to θ2. Then
the Fisher information matrix can be written

M(ξ, θ)= V T
r 3Vr =

[
V T

1 3V1 V T
1 3V2

V T
2 3V1 V T

2 3V2

]
=

[
M11 M12

M21 M22

]
,

and (local) Ds(θ1)-optimal designs are those which maximize

|M|/|M22| = |M11−M12 M−1
22 M21|. (11)

provided M22 is nonsingular. In line with the above definitions, when the sample
size n is set a priori and the design weights are scalar multiples of 1/n, then the
design is called discrete (mass); otherwise it is continuous (mass).

The case where V1= v1 and V2= v2 are column vectors (i.e., when p1= p2= 1)
is of particular interest since it is easy to visualize the underlying objectives of the
optimal design strategies. For example, Box and Lucas [1959] point out that in
this instance the D-optimality criterion seeks designs which maximize the product
of three terms: a term which captures the length of the vector v1, a term which
captures the length of v2, and a term which increases with the angle between these
two vectors. Hill and Hunter [1974] point out that the subset criterion in (11)
chooses designs to maximize only the product of the first and third of these terms.

Example 2 (continued). For the IP2 model setting described above, note that the
discrete Ds(θ1)-optimal design associates that weight λ = 1/2 with each of the
points s1 = 1.172 and s2 = 7.441, and the column vectors are plotted in Figure 2
and denoted vD

1 and vD
2 respectively.
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Figure 2. IP2 model and visualization of V1 and V2 for the
Ds(θ1)-optimal (subset) continuous (C) and discrete (D) designs.

If we take n= 2, this is the same result we obtain if we use the VW matrix in (2):
precisely what is used to derive analogous results for the continuous subset design.
This latter design associates the weight λ1 = 0.878 with the point s1 = 0.994,
and the weight λ2 = 0.122 with the point s2 = 7.122; the corresponding vectors,
denoted vC

1 and vC
2 , are also plotted in Figure 2. In terms of the measure in (11),

the efficiency of the discrete design with respect to the continuous one is only
0.6549 — that is, about 65%. Since 1/0.6549 = 1.53, this means that the discrete
design needs to be 53% larger than the continuous one in order to yield the same
amount of information as the continuous design. Geometrically, as we shift from
the discrete design (vD

1 and vD
2 ) to the continuous one (vC

1 and vC
2 ) in Figure 2,

the small reduction in orthogonality between v1 and v2 in the figure results in a
significant lengthening of the v1 vector.

Before we leave this example, let’s now extend the concept of design locus
presented in [Hill and Hunter 1974, page 430] and [Atkinson and Donev 1992,
page 200] to allow for continuous designs. Whereas the geometric strategy in
Figure 2 is to focus on the columns of VW , the design loci, graphed in Figure 3,
focus on the rows of this matrix.

For this example, the solid curve in the center of Figure 3 corresponds to the
discrete design and is traced out as x ranges from 0 to infinity; the two solid circles
on this design locus correspond to the discrete design support points given above.
In contrast, the outer dot-dashed curve is the design locus for λ1 = 0.878 and the
inner dotted curve for λ2= 0.122, with the corresponding continuous design points
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Figure 3. Design loci plots of DER2 = ∂ηw/∂θ2 =
√
ηλ ∂η/∂θ2

versus DER1= ∂ηw/∂θ1=
√
ηλ ∂η/∂θ1 for λ=0.122, 1/2, 0.878,

1.0. Points correspond to the discrete subset design (filled with
circles on the λ = 1/2 design locus) and the continuous subset
design (filled with squares on the λ=0.122 and 0.878 design loci).

indicated on the respective loci (darkened squares). For completeness, the design
locus corresponding to λ = 1 — which represents the outermost possible design
locus — is plotted in the figure with the dashed curve.

Continuous D2(θ1)-optimal designs with reduced curvature. The results presented
in Sections 4.1 and 4.2 underscore the importance of seeking optimal designs for
nonlinear models with reduced curvature in addition to smaller variance, and we
now consider this issue in the context of subset designs. As mentioned above,
three design criteria which take account of nonlinearity are the volume criterion
of [Hamilton and Watts 1985; O’Brien 1992], the second-order MSE criterion of
[Clarke and Haines 1995], and the marginal curvature criterion of [O’Brien 2006].
The last of these criteria is well suited for subset designs and interested readers
are referred to see [O’Brien 2006]; an extension of the volume criterion to subset
designs is not as straightforward, and is not considered here. Rather, we underscore
here the use of continuous designs with the MSE criterion.

Employing the second-order variance approximation given in [Clarke 1980]
and the second-order bias approximation given in [Box 1971], Clarke and Haines
[1995] illustrate the use of discrete subset second-order minimum MSE designs.
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We call these designs (local) D2(θ1)-optimal here. This criterion is well suited to
incorporating continuous design as is demonstrated in the following illustration.

Example 2 (continued). For the IP2 model setting described above, discrete and
continuous Ds(θ1)-optimal designs are given in the previous section, however we
point out that these designs do not attempt to reduce nonlinearity. In contrast, the
continuous D2(θ1)-optimal design, which associates the weight λ1 = 0.825 with
the point s1 = 0.834 and the weight λ2 = 0.175 with the point s2 = 5.706, does
result in lower curvature measures. We return to the assessment of curvature in
situations such as the present one in the Discussion. Interestingly, in comparing
this continuous subset design with the first-order (Ds(θ1)-optimal) one, although
the design weights remain essentially unchanged, the design support points shift
downward towards the origin.

5. Applications to confidence intervals and regions

Important confidence regions for model parameters associated with nonlinear mod-
els using discrete designs are the Wald, likelihood-based and second-order regions
of the form {θ such that LHS≤ ρ2

a}. The left hand sides (LHS’s) in this expression
are as follows:

Wald : LHS = (θ − θ∗)T V T
∗

V∗(θ − θ∗),
Likelihood : LHS = S(θ)− S(θ∗),

Second-order : LHS = τ T (Ip − B)τ .
(12)

The first two of these regions are discussed in [Seber and Wild 1989]. The last of
these regions, developed in [Hamilton et al. 1982], leads directly to the second-
order volume design criterion given in [Hamilton and Watts 1985] since the given
volume approximates the volume of this second-order region. In these expressions,
θ∗ is the maximum likelihood estimate of θ , S(θ) = 6[yk − ηk(θ)]

2 is the usual
sum-of-squares function, B is as in (3), and

τ = U T
[η(θ)− η(θ∗)]

for U discussed in the paragraph following (3). Also, based on [Seber and Wild
1989, page 261], we take ρ2

a = σ
2χ2

p since σ is assumed to be known. With the
definitions given in Section 3 we now extend these regions to allow for continuous
designs.

Specifically, we use the weighted Jacobian matrix given in (2) for the Wald
region, the weighted model function in (1) in the calculations of the sum-of-squares
functions used in the likelihood-based region, and the weighted Jacobian matrix
and Hessian array in (2) in the calculations for the second-order region. The fol-
lowing example provides an illustration.
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Example 3. Using the one-parameter simple exponential (SE1) model function,
η(x, θ)= e−θx , and initial parameter estimates θ0 = 0.10 and σ0 = 0.40, the two-
point discrete Q-optimal design associates the weight λ = 1/2 with each of the
points s = 5.10 and 7.34, whereas the continuous Q-optimal design associates the
weight λ1 = 0.926 with the point s1 = 5.49 and the weight λ2 = 0.074 with the
point s2 = 25.92. Then, for this continuous design, the left-hand sides (LHS) in
(12), that is, the so-called confidence functions, are given as follows:

Wald : LHS = 19.163(θ − 0.10)2,
Likelihood : LHS = (0.85− 1.36e−5.49θ )2+ (−0.37− 0.39e−25.9θ )2− 0.402,

Second-order : LHS = 1.314(1.341e−5.49θ
+ 0.066e−25.9θ

− 0.780)2.

These confidence functions are plotted for this continuous design in the left panel
of Figure 4 along with the horizontal cut-line ρ2

a = σ
2χ2

1,0.90 = 0.4022.71= 0.434.
The corresponding confidence intervals are thus the intervals on the cut-line

between the sides of the respective confidence functions. The inadequacy of the
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Figure 4. Confidence functions for the SE1 (one-parameter sim-
ple exponential) model function. In the left panel, plot of the three
confidence interval methods in (12). In the right panel, plot of the
second-order (Hamilton and Watts) function for the continuous
and discrete Q-optimal designs. Horizontal cut-line corresponds
to 90% confidence.
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Wald interval is readily apparent here. Also, note the considerable coincidence here
between the second-order and likelihood functions (and thus confidence intervals).

In the right panel of Figure 4, the second-order confidence functions are plotted
for the continuous and discrete Q-optimal designs. That the confidence interval for
the continuous design is shorter (by about 15%) than the confidence interval for
the discrete design attests to the efficiency of the former design and underscores
the importance of using continuous designs.

6. Discussion

This article demonstrates how simple yet important adjustments to the model func-
tion in (1) and to the associated Jacobian and other matrices given in (2) can be
made so as to permit the use of continuous designs in curvature measures, optimal
design procedures and the calculation of confidence intervals. The gains of contin-
uous designs over discrete designs, wherein the final sample size is assumed fixed
a priori, are often significant. As a result, we recommend that continuous designs
always be obtained and examined at least as a starting point.

As mentioned above in Section 4, several design criteria exist which can be used
to obtain designs with reduced curvature. The Q-optimality criterion, used exten-
sively in this paper, provides designs that minimize the second-order approximation
to the volume of the likelihood confidence region. The MSE criterion of [Clarke
and Haines 1995] provides designs that minimize a second-order approximation of
the mean-square error of the least-squares parameter estimate. The MC (marginal
curvature) approach of [O’Brien 2006] yields designs which minimize the first-
order variance approximation and the marginal curvature of [Clarke 1987] for a
specified parameter or set of parameters. The latter two of these criteria are readily
adapted to yield efficient designs for parameter subsets, as demonstrated on p. 327.
Clearly more work needs to be performed exploring which of these three criteria is
“best”. It may well be the case, however, that each criterion does well only for the
respective curvature measure (but not the others), and how one determines which
is best may have more to do with how one defines curvature or nonlinearity.

A clear advantage of the volume criterion developed in [O’Brien 1992] and
extended here is that this design strategy usually yields designs with extra support
points which can be used to test for model misspecification. The same beneficial
result is associated with the design strategy in [O’Brien 2006], which focuses on
geometric designs. Govaerts [1996] correctly calls an optimal design’s having
only p support points a “big limitation” in practical settings. This is especially
important when one keeps in mind George Box’s comment that “all models are
wrong but some are useful” [Box 1979]. These arguments clearly lead us to prefer
the Q-optimality and MC design approaches discussed here.
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