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In recent years, more robust methods of estimating the size of a closed population

{(N) from capturc—tecapture data have been developed. However, interval estimation for

N has seen few practical developments. The usual approach for constructing a confidence

interval, known as a Wald confidence interval, is based on the assumption of asymptdtic

nommality. It is well khown that the small sample distribution of capture-recapture es-

" timators are strongly asymmetric and thus deviate from normality. As a result, Wald

counfidence intervals are frequently unreasonable; having lower limits that extend below

the number of animals known to exist, or even being negative. Two other approaches

to the construction of confidence intervals, the profile-likelihood based method and the

- bootstrapped method, show much promise. The computational burden of the profile-

likelihood confidence interval is much less than the bootstrapped confidence interval and
appears to be an excellent alternative to the Wald confidence interval.
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1. INTRODUCTION

The recent literature has presented some novel approaches to the problem of esfi-
mating the size of a closed population (V) from capture-recapture data (Huggins 1989,
1992; Alho 1990; Evans and Bonett 1993; Evans, Bonett, and McDonald 1994), These -
approaches promise point estimates of [V that have smaller bias and are less variable
than their predecessors (see Otis, Bumham, White, and Anderson 1978). As with previ-
ous methods, these recent approaches rely on asymptotic theory for variance estimates. It
is thus a simple task to produce an approximate 100- (1 —2 - @)% Wald-type confidence
interval N & Z, - 6. Here, N denotes the maximum likelihood estimate (MLE) of N;
&g is the estimated asymptotic standard error of the estimate; and Z, is the (1 — a)
standard normal quantile.

In an empirical study, Evans and Bonett (1994) found the asymptotic variance for
the ML estimator of N to be positively biased. This bias is so large in situations of small
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sample size, or low-to-moderate capture probability, as to render the variance estimates
useless. As if to add insult to injury, the small sample distribution of N is skewed
right (White, Anderson, Burnham, and Otis 1982, p. 34). These characteristics frequently
combine and result in a lower limit of a Wald confidence interval that is.less than the
number of individuals captured (Otis et al. 1978, p. 133-135), or even negative. Because
of these properties, the utility of the symmetric Wald-based confidence interval is greatly
reduced.

Bootstrapped confidence intervals (see Efron and Tibshirani 1993) provide a viable
alternative to Wald confidence intervals. This approach to the construction of confidence
intervals for capture-recapture estimators was suggested by Huggins (1989). More re-
cently, Garthwaite and Buckland (1992) proposed a modified bootstrap procedure to
compute confidence intervals for capture-recapture estimators. This approach was found
to produce confidence intervals that had very near the anticipated nominal coverage. Be- .
canse bootstrap confidence intervals are based on the empirically generated distribution of
N, nonnormality is no longer a concern. Also, bootstrapped confidence intervals produce
limits that will fall outside the permissible range (e.g., below the number of captured
individuals) only if this is possible for a given capture-recapture model (Buckiand and
Garthwaite 1991), Thus, the bootstrapped confidence interval appears to possess many
excellent properties. However, because modeling procedures for capture-recapture data,
such as log-linear and logistic regression models, are computer intensive, computing a
confidence interval based on a thousand or more bootstrapped estimates could be a very
time-consuming task (see Efron and Tibshirani 1993).

Many of the negative characteristics attributed to Wald confidence intervals may stem
from the nonlinear nature of capture—recapture estimators. As indicated by Ratkowsky
(1988), Wald confidence intervals for the parameters of nonlinear regression models suf-
fer the same ilis as those found in capture-recapture models. For nonlinear regression
models, poor confidence interval coverage may be attributed to parameter effects’ non-
linearity; that is, the lack of parallelism and the unequal spacing of parameter lines on the
solution locus at the least-squares solution is a primary cause of poor performance in the
‘Wald confidence interval (Ratkowsky 1988, p. 20-25). When parameter effects’ nonlin-
earity is considerable, likelihood-based confidence intervals, not Wald, may more closely
approximate the true situation (Ratkowsky 1988, p. 38). Although computationally more
tedious than the Wald confidence intervals, likelihood-based confidence intervals involve
far less computation than bootstrapped confidence intervals. Thus, likelihood-based con-
fidence intervals may retain the robustness of the bootstrapped confidence interval, but
present a more simplistic computational structure. Given the previous discussion, it would
secm reasonable to consider likelihood-based confidence intervals for closed population
capture-recapture methods. In fact, Lebreton, Burnham, Clobert, and Anderson (1992,
pp. 72-73), briefly discussed the feasibility of likelihood-based confidence intervals for
open population capture-recapture methods. Also, Morgan and Freeman (1989) provided
examples of likelihcod-based confidence intervals for band recovery data. Beyond these
two notable examples, there appears to be few, if any, articles that illustrate the use of
likelihood-based confidence intervals for capture—tecapture methods. In particular, there
appears no published work that compares the operating characteristics of Wald, boot-
strap, and likelihood-based confidence intervals for closed population capture—recapture
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estimators. Thus, a comparative study of the three methods would seem in order.

In the following section we describe the procedure for constructing profile-likelihood
based confidence intervals (Venzon and Moolgavkar 1988) for the estimator of N based
on capture—recapture data. In the third section, an example of the two sample capture—
recapture experiments is presented. Wald, bootstrap, and profile-likelihood confidence
intervals are constructed for these data and comparisons drawn. The fourth section details
a Monte Carlo simulation study that was designed to gain insight into the characteristics
of the three described methods of constructing confidence. '

2. PROFILE-LIKELIHOOD BASED CONFIDENCE INTERVALS

Following Venzon and Moolgavkar (1988), let 6, € R denote the parameter vector
to be estimated, and I(#) the log-likelihood for values of  belonging to the parameter
space © C R*. If 4 denotes the MLE of 6, then

1) = 3“:"9 18). 2.1)

Suppose the jth element of 8, denoted 8;, is the parameter of interest, with all other
elements of § to be treated as nuisance parameters. Now consider a restriction to the
parameter space O, where 8; is fixed at some value, say 3. If the restricted space is
defined as 8;(f) = {0 € ©|9; = S}, then

max

?J' B = fe eg(ﬂ) 1(0) (2'2)

is called the profile likelihood for 8. Evaluation of 2.2 involves the maximization of
the log-likelihood function with #; constrained to 3 (see Evans, Bonett, and ‘McDonald
1994). An approximate 100- (1 — 2 @)% profile-likelihood based confidence interval for
0o, is given by

{812-[1®) - (B} < 4,0)5 (23)

where g(; ) represents the {1 — o) quantile of the chi-square distribution based on 1
degree of freedom.

This approach to the construction of confidence intervals is quite general. Although
this article only discusses the attributes of profile-likelihood based confidence intervals
for the two-period capture-recapture experiment, the method equally applies to most
capture-recapture models for two or more capture periods (see Ofis et al. 1978).

3. THE CAPTURE-RECAPTURE EXPERIMENT

Lincoln (1930) and Petersen (1896) independently derived an estimator for the size
of a population based on a design having two trapping occasions. The first period involves
the capture, tagging, and release of animals. In the second period, animals are captured
and their capture status from the first period recorded. As a typical example, consider the
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cottontail rabbit data of Skalski, Robson, and Simmons (1983) as displayed}n a 2-by-2
contingency table:

Period 2
Captured Not captured
(1) (2)
Captured (1) Fiy=17 Fip =80 Fy =81
Period 1
Not captured (2) Fy =17 Fyy =17
Fy=14

It is typically assumed that the capture frequencies (F;) follow a multinomial distri-
bution. The log-likelihood function for the capture-recapture experiment is defined as
follows:

L(N,P,,B) =log(N)— ) _log (F;;!) + Y _ Fi; -log (Pyj) - (3.1)
i iF

Here, P;; represents the probability of observing the ijth outcome (i = 1,2 and j =
1,2). For the two-period capture-recapture experiment it is typically assumed that the
observations are independent between capture periods 1 and 2, with marginal probabilities
Py and P, respectively. The structure of the P are thus simplified: Py = P- B, Py =
P; . (1 i Pg),Pz] = (1 -P;) ~Pg, and _P;g = (1 -'P;) . (l -—Pg).

For the two sample capture-recapture experiment, a simple closed-form estimator,
known as the Lincoln-Petersen (LP) estimate (Seber 1982, pp. 59), exists. However, this
estimatordoes not have finite expectation. Several modifications to the LP estimator have
been proposed. A modified form of the LP estimators was proposed by Evans and Bonett
(1994) in which .5 is added to each observed frequency. This modification was shown
to reduce the mean square error and, as was shown more generally by Firth (1993), for
some measure of accumulated information, say n, also removes the bias of order O(n).
The estimator of the population size and estimated asymptotic standard error, as applied
to the cottontail data, are respectively

N= Fu+Fop+D)-Fu+FP+1D
hw+.5

-~ 1.5=174.5,

and

by = (F+D-(F1+ Dy +3-5) cEn+5) _ 43.46.
(Fy; +0.5)

A symmetric 95% Wald-based confidence interval for the data of Skalski, Robson, and
Simmons (1983) is 89.3 to 259.7 rabbits. Immediately, one should be concerned because
the lower limit is less than the 94 captured individuals. As stated previously, this is a
common trait of Wald confidence intervals for N. Skalski and Robson (1992, pp. 72-76)
described a method for transformation-based Wald confidence intervals, which tends to
reduce the problem of inadmissible lower confidence limits.
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The simplest approach to computing profile-likelihood based confidence intervals
involves a hunt-and-peck procedure (see Venzon and Moolgavkar 1988 for an iterative
search method). For the lower limit, a value for 3, between the MLE for N and the
number of individuals captured, is selected and the log-likelihood maximized with respect
to Py and P at the fixed value of (3. Using the log-likelihoed of (3.1), equations (2.1)
and (2.2) can be evaluated for a given value of 3, followed by evaluation of (2.3). The
lower limit of the confidence interval is the S such that (2.3) equals the appropriate
chi-square quantile. The upper limit of the confidence interval is located in a similar
manner. For the cottontail ‘data, the profile-likelihood based 95% confidence interval is
119.1 to 350.2 rabbits. When compared to the symmetric Wald-type confidence interval
two characteristics should be apparent: first, as one would hope, the lower limit is larger
than the total number of individuals captured; and second, as one would expect for a
positively skewed distribution, the interval is not symmetric about the estimate of N.
Comparing these results with a bootstrapped 95% confidence interval of 123.8 to 320.4
rabbits (based on 10,000 bootstrapped simulations) we see that the profile-likelihood
based confidence interval has far more affinity to the bootstrapped confidence interval
than the Wald-based confidence interval.

4. A SIMULATION STUDY

Clearly, a single example is not definitive. Unfortunately, the small sample prop-
erties of capture-recapture estimators do not lend themselves to analytic solutions. To
better understand the properties of the different methods described for confidence inter-
val construction, a Monte Carlo simulation study was undertaken. The main purpose of
this simulation was to empirically compare the three methods. Comparison of the three
methods was to be based on the percentage of times that the known population size fell

Table 1. Simulated Estimate of the Average for the Modified Lincoin—Petersen Esfimator of the Pop-
ulation Size N Based on 10,000 Simulated Realizations

Population size Probability set
25 50 100 800 Py

176 455 11863 859.9
250 600 1281 8255
306 639 1175 8132
328 608 1105 8080
31.9 575 1066 806.0
305 548 104.0 8049
288 53.0 1028 8023
276 522 1022 8016
269 518 101.7 8012
264 512 1013 8013
260 508 1008 8012
258 50.7 100.7 800.7
256 505 1005 8007
254 504 1005 8004
253 503 100.3 8004
252 6502 1002 8002
251 501 100.1 800.1

bobwmNNoBmhnhRwbivbD
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Table 2. Simulated Estimate of the Average for the Asymptotic Variance Estimator (upper) and Mean
Square Error (lower) for the Modified Lincoln—Petersen Based on 10,000 Simulaled Real-

izations .
Population size Probability set
25 50 100 800 Py Py
736.0 4861.7 32761.7 2326694 A A

208.2 9354 71352 1592256
14225 83865 37298.1 40437.8
291.7 19871 115649  39832.7

»
-

2
2031.1 83675 163125 148803 .2 2
4972 26227  7042.0 14520.7
21837 53199 55293 82066 .3 2
638.2 19794 30769 8040.2
1729.1 2458.6 11215 46662 3 3
5865 11509 979.9 46324
11334 9188 569.2 28573 4 3
4326  529.0 520.1 2971.6
€03.1 259.9 306.9 18615 4 4
2632  208.8 286.4 1841.0
2464 1343 193.5 12321 5 4
130.0 ~ 116.1 187.8 1267.2
102.3 824 123.1 8180 5 5
66.2 77.4 118.8 837.4
49.8 48.0 80.2 5447 6 5
36.3 452 77.0 538.7
219 29.7 51.0 3629 6 6
185 269 48.8 ' 3588
135 19.0 327 2326 7 6 -
11.5 17.9 319 234.7
75 1.7 20.8 1484 7 7
65 10.9 20.2 146.5
4.6 6.9 12.1 870 8 7
3.6 6.1 113 87.5
25 4.0 70 508 .8 8
20 3.6 6.8 50.7
1.2 1.8 3.2 26 9 8
-0.8 1.6 3.0 227
5 .8 1.4 100 8 9
4 7 1.3 8.9

above and below the simulated confidence intervals, relative to the nominal value of 2.5%.
Because capture-recapture estimators and their asymptotic variance estimators areknown
fo be biased, the simulated mean for estimator and variance estimator, along with the
mean square error, will be important when considering the simulation results.

The matrix-based language GAUSS (Aptech 1993) was used for all aspects of the
simulation study. Multinomial observations for the two sample capture-yecapture experi-
ment were generated for a specific population size (25, 50, 100, and 800) and probability
structure using a uniform random-number generator. Each combination of population
size and probability structure was simulated 10,000 times. For each combination, the
‘Wald and profile-likelihood 95% confidence intervals were constructed and assessed for
inclusion of the known population size.

The computational burden necessary to simulate the properties of the bootstrapped
confidence intervals required some downsizing. The number of primary simulations per-
formed per population size and probability structure were reduced from 10,000 to 1,000
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Table 3. Simulation Results for Wald, Profile-Likelihood, and Bootsirapped 95% Confidence intervals

on N .
Population size Probabiliy set

25 50 100 800 Py P,

00 279 O 217 0 175 0 84

0.0 29 0 33 0 23 8 16 A A

00 158 0 57 0 1.8 21 32

0.0 190 0 164 0 138 £ 70

0.0 29 0 27 A 22 10 186 2 A

0.1 37 A 24 1.1 25 29 18

0.0 150 0 127 0 102 .2 54

0.0 29 2 2.7 7 21 10 15 2 2

0.4 27 16 30 29 25 27 25

00 130 0 . 10.8 .0 8.6 4 49

0.3 32 4 2.7 9 21 11 18 3 2

1.0 23 21 32 34 25 20 27

00 122 .0 8.0 0 72 8 4.1

0.7 386 8 25 13 24 16 17. 3 3

14 14 16 30 24 31 23 23

0.0 105 0 82 1] 72 10 441

09 42 12 31 12 31 19 23 4 3

20 1.7 26 1.6 26 26 26 20

0.0 85 .0 7.9 0 62 11 39

1.8 40 23 33 22 27 21 28 4 4

24 25 25 15 27 1.5 24 23

0.0 9.0 .0 6.8 1 57 16 39

23 52 25 39 29 35 29 35 5 4

20 21 21 23 24 25 3.0 28

00 83 .0 6.4 2 52 1.4 36

23 6.0 32 50 32 41 26 19 5 5

2.0 16 30 20 26 3.0 26 19

NOTE: Values are the percentage that the Wald (upper), profile-likelihood (middie},
and bootstrapped {lower) confidence intervals did not contain the appropriate
population size.

for populations of size 25, 50, 100, and 800. This procedure involved the generation
of a multinomial realization for a given population size and probability structure, fol-
lowed by the computation of the population size. For each simulated realization of the
F;, N was computed and the cell probabilities estimated as £;; = Fj; /. Substituting
these estimates for the parameters of the multinomial distribution, 1,000 bootstrapped
realizations were generated and the estimate of N computed for each bootstrapped re-
alization. These 1,000 estimates were ordered and a confidence interval constructed by
selecting the appropriate values (the 25th and 975th for a 95% confidence interval). This
approach, known as the percentile method (see Efron and Tibshirani 1993, chap. 13),
was used for each of the 1,000 confidence intervals constructed for a given population
size and probability structure. As with the Wald and profile-likelihood methods, each
bootstrapped confidence interval was assessed for inclusion of the known population size
and the results accumulated.
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Table 3. Continued

Population size Probability set
25 50 100 800 Py Pa
00 83 0 68 3 50 13 86
23 62 27 58 29 45 32 43 8 B
22 21 23 32 20 2t 31 27
00 72 0 58 3 51 1.7 33
22 6.1 25 50 30 50 36 42 6 6
19 25 31 23 21t 21 22 21
0.0 67 0 61 4 50 1.7 34
1.8 58 27 56 33 51 38 44 7 K]
3.2 16 27 27 22 25 19 18
Q0 70 0 61 4 50 16 30
16 58 24 52 29 49 35 490 7 7
25 20 26 15 17 23 21 29
00 69 b0 57 3 48 17 34
07 58 17 46 24 44 32 44 8 7
45 19 34 16 18 33 23 22
0.0 6.2 0 61 2 48 16 34
0.3 45 9 43 21 42 29 35 .8 .8
9.8 23 45 25 20 23 24 21
00 7.2 0 66 0 56 15 37
0.7 32 1 40 5 40 22 32 9 8
243 17 81 21 136 25 25 27
0.0 66 0 64 0 58 11 238
20 15 S5 30 0 34 14 28 9 9
422 8 231 19 55 18 23 3.0

NOTE: Values are the percantage that the Wald (upper), profile-likelihood (middle),
and bootstrapped (lower) confidence intervals did not contain the appropriate
population size.

The results of these simulations are found in Tables 1, 2, and 3. Table 1 shows
the performance of the estimator for each combination of population size and probabil-
ity structure. Table 2 compares the average estimated variance and the empirical mean
squared error. Table 3 gives the percentage, for each method of confidence interval con-
struction, in which the known population size fell below the lower limit and above the
upper limit.

5. DISCUSSION

As expected, the simulation results indicate that the Wald-type confidence interval
has very poor operating characteristics, excepting the results for the large population
(N = 800) and moderate capture probabilities (F; > .3). Beside the issue of nonnormal-
ity, Wald confidence intervals also suffer from the poor performance of the asymptotic
variance estimator (see Table 1). Admittedly, the Wald confidence interval has simplic-
ity as an attribute, but litfle more. On the other hand, the profile-likelihood confidence
interval, and especially the bootstrapped confidence interval, performed well in both the
‘small and large population cases and over nearly all ranges of capture probabilities. The
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bootstrapped confidence intervals were quite exceptional, except for the case of a small
population (¥ = 25 or possibly 50) with small or large capture probability (P; < .2 and
F; > .8). The small variation among adjacent values in the percent failure rate for the
bootstrapped confidence interval is probably from use of 1,000 bootstrapped estimates
as opposed to use of some larger value. Efron and Tibshirani (1993, chap. 13) indicated
that construction of bootstrapped confidence intervals requires a minimum of 1,000 boot-
strapped estimates, but that a larger number, say 10,000, may be necessary to obtain more
stable estimates. Unfortunately, using such a large value would have made the simulation
‘study unreasonably long in duration. A second source of variation among adjacent values
in the percent failure rate for the bootstrapped confidence interval may be due to random
variation in the simulation based percent failure estimates. The standard error for the
bootstrapped percentage estimates based on 1,000 simulations is approximately .5%; all
other simulated percent-failure estimates, based on 10,000 simulations, would have an
approximate standard error of .2%. This latter source of variation is sufficiently large to
explain the variation observed in the bootstrap percent failure rate,

The profile-likelihood confidence interval appears to be an excellent alternative to
both the Wald and bootstrapped confidence intervals. It has operating characteristics that
closely resemble the bootstrapped confidence interval, even surpassing the bootstrapped
method for small or large capture probabilities (F; < .2 and F; > .8). It also is far less
costly from a computational standpoint.

For the simple two period capture-yecapture experiment, the computer time required
to construct a bootstrapped confidence interval was nearly two orders of magnitude longer
than the profile-likelihood confidence interval. '

Most biologists do not rely on the simple two period capture-recapture design as the
basis for collecting capture data and subsequently estimating the population size. More
typical are designs with three to ten capture periods. These designs allow for more robust
estimation of the population size, but require data structures, and hence models, that are
far more complicated. Attempting to construct bootstrapped confidence intervals for such
complicated situations would require large amounts of computer time, possibly days. The
profile-likelihood approach, although more time consuming than the Wald-based method,
is much less time consuming than the bootstrap approach and is a method that deserves
consideration. .

[Received November 1994, Revised January 1995.]

REFERENCES

Alho, §. M. (1990), “Logistic Regression in Capture-Recapture Models,” Biometrics, 46, 623-635.

Aptech Systems, Inc. (1993), The GAUSS System Version 3.1.4, Mapie Valley, WA: Aptech Systerns.

Buckland, S. T., and Garthwaite, P. H. (1991}, “Quantifying Precision of Mark-Recapture Estimates Using the
Bootstrap and Related Methods,™ Biometrics, 47, 255-268.

Efron, B., and Tibshirani, R. J. (1993), An Introduction to the Bootstrap, New York: Chapman and Hall.

Evans, M. A, and Bonett, D. G, (1993), “A Constrained Cook-Jacobson Model of Visibility Bias,” Biometrics,
49, 853-859.



140 M. A. Evaxs, H.-M. Kmv, anp T. E. O’'Brien

—— (1994), “Bias Reduction for Multiple Recapture Estimators of Closed Population Size,” Biometrics,
50, 388-395.

Evans, M. A., Bonett, D. G., and McDonald, L. L. (1994), “A General Theory for Modeling Capture-Recapture
Data From a Closed Population,” Biomerrics, 50, 396-405.

Firth, D. (1993), “Bias Reduction of Maximum Likelihood Estimates,” Biometrika, 80, 27-38.

Garthwaite, P. H., and Buckland, S. T. (1992), “Generating Monte Carlo Confidence Intervals by the Robbins—
Monro Process,” Applied Staristics, 41, 159-171.

Huggins, R. M. (1989), “On the Statistical Analysis of Capture Experiments,” Biometrika, 76, 133-140.

(1991), “Some Practical Aspects of a Conditional Likelihood Approach to Capture Experiments,”
Biomerrics, 47, 725-732. .

Lebreton, J. D., Bumham, K. P., Clobert, I, and Anderson, D. R. (1992}, “Modeling Survival and Testing
Biological Hypotheses Using Marked Animals: A Unified Approach With Case Stmdies,” Ecological
Monographs, 62, 67118, ,

Lincoln, F. C. (1930}, “Calculating Waterfowl Abundance on the Basis of Banding Returns,” U.S. Department
of Agriculture Circular No. 118, 1-4.

Morgan, B. I. T, and Freeman, S. N. (1989), “A Model With First-Year Variation for Ring-Recovery Data,”
Biometrics, 45, 1087-1101.

Otis, D. L., Burpham, K. P., White, G. C., and Anderson, D. R. (1978), “Statistical Inference for Capture Data
From Closed Populations,” Wildlife Monographs, 29, 135pp.

Petersen, C. G. J. (1896), “The Yearly Immigration of Young Plaice into the Limfjord from the German Sea,”
Report of the Danish Biological Station, 6, 5-48.

Ratkowsky, D. A. (1988), Handbook of Nonlinear Regression Models, New York: Marcel Dekker.

Seber, G. A. F. (1982), The Estimation of Animal Abundance and Related Parameters (2nd ed.), Bucks, England:
Charles Griffin and Company.

Skalski, I, R., and Robson, D. S. (1992), Techniques for Wildlife Investigations: Désign and Analysis of Capture
Data, San Diego, CA: Academic Press.

Skalski, J. R., Robson, D. §., and Simmons, M. A. (1983), “Comparative Census Procedures Using Single
Mark-Recapture Methods,” Ecology, 64, 752-760.

Venzon, D. 1., and Moolgavkar, 5. H. (1988), “A Method for Computing Profile-Likelihood Based Confidence
Intervals,” Applied Statistics, 37, 87-94.

White, G. C., Anderson, D. R., Burnham, K. P., and Outis, D. L. (1982), Capture-Recapture and Removal
Methods for Sampling Closed Populations, Los Alamos, New Mexico: Los Alamos National Laboratory.



http:Agricultu.re

	jabes01
	jabes02
	jabes03
	jabes04
	jabes05
	jabes06
	jabes07
	jabes08
	jabes09
	jabes10

