
An Application of Profile-Likelihood 

Based Confidence Interval to 


Capture-Recapture Estimators 


Marc A. EVANS, Hag-Min KIM, and Tunothy E. O'BRIEN 

In recent years, more robust methods 'of estimating the size of a closed population 
(N) from capture-recapturedata have been developed. However, interval estimation for 
N has seen few practical developments. The usual approach for constructing a confidence 
interval, known as a Wahl confidence interval, is based on the assumption of asymptotic 
normality. It is well bown that the small sample distribution of capture-recaptu es­
timators are strongly asymmetric and thus deviate from normality. As a resuI~ Wald 
confidence intervals are frequently unreasonable; having lower limits that extend below 
the number of animals known to exis~ or even being negative. Two other approaches 
to the construction of confidence intervals, the profi1e..Jikelihood based method and the 
bootstrapped method, show much promise. The computational burden of the profile­
likelihood confidence interval is much less than the bootstrapped confidence interval and 
appears to be an excellent alternative to the Wald confidence interval. 
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1. INTRODUCTION 

The recent literature has presented some novel approaches to the problem of esti­
mating the size of a closed population (N) from capture-recapture data (Huggins 1989, 

1992; Alho 1990; Evans and Bonett 1993; Evans, Bonett, and McDonald 1994). These, 
approaches promise point estimates of N that have smaller bias and are less variable 
than their predecessors (see Otis, Burnham, White, and Anderson 1978). As with previ­

ous methods, these recent approaches rely on asymptotic theory for variance estimates. It 
is thus a simple task to produce an approximate 100· (1 - 2· a)% WaId-type confidence 

interval f:t ± Za' uf{o Here, f:t denotes the maximum likelihood estimate (MLE) of N; 
uf{ is the estimated asymptotic standard error of the estimate; and Za is the (1 - a) 
standard normal quantile. 

In an empirical study, Evans and Bonett (1994) found the asymptotic variance for 

the ML estimator of N to be positively biased. This bias is so large in situations of small 
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sample size, or low-ta-moderate capture probability, as to render the variance estimates 
useless. As if to add insult to injury, the small sample distribution of II is skewed 
right (White, Anderson, Burnham, and Otis 1982, p. 34). These characteristics frequently 

combine and result in a lower limit of a Wald confidence interval that is.less than the 

number of individuals captnred (Otis et al. 1978, p. 133-135), or even negative. Because 
of these properties, the utility of the symmetric Wald-based confidence interval is greatly 
reduced. 

Bootstrapped confidence intervals (see Efron and TIbsbirani 1993) provide a viable 
alternative to Wald confidence intervals. This approach to the CQIlStruction of confidence 
intervals for capture-recapture estimators was suggested by Huggins (1989). More re­

cently, Garthwaite and Buckland (1992) proposed a modified bootstrap procedure to 
compute confidence intervals for capture-recapture estimators. This approach was found 

to produce confidence intervals that had very near the anticipated nominal coverage. Be- . 
cause bootstrap confidence intervals are based on the empirically generated distribution of 

II, nonnormality is no longer a concern. Also, bootstrapped confidence intervals produce 
limits that will fall outside the permissible range (e.g., below the number of captured 
individuals) only if this is possible for a given capture-recapture model (Buckland and 
Garthwaite 1991). Thus, the bootstrapped confidence interval appears to possess many 

excellent properties. However, because modeling procedures for capture-recapture data, 
such as log-linear and logistic regression models, are computer intensive, computing a 

confidence interval based on a thousand or more bootstrapped estimates could be a very 
time-consuming task (see Efron and TIbsbirani 1993). 

Many of the negative characteristics attributed to Wald confidence intervals may stem 
from the nOnlinear riature of captu.re-recapture estimators. As indicated by Ratkowsky 
(1988), Wald confidence intervals for the parameters of nonlinear regression models suf­

fer the same ills as those found in capture-recapture models. For nonlinear regression 
models, poor confidence interval coverage may be attributed to parameter effects' non­

linearity; that is, the lack of parallelism and the uneq\l8l spacing of parameter lines on the 

solution locus at the least-squares solution is a primary cause of poor performance in the 
Wald confidence interval (Ratkowsky 1988, p. 20-25). When parameter effects' nonlin­

earity is considerable. likelihood-based confidence intervals, not Waldo may more closely 
approximate the true situation (Ratkowsky 198,8.p. 38). Although computationally more 
tedious than the Wald confidence intervals, likelihood-based confidence intervals involve 

far less computation than bootstrapped confidence intervals. Thus, likelihood-based con­

fidence intervals may retain the robustness of the bootstrapped confidence interval, but 
present a more Simplistic computational structure. Given the previous discussion, it would 

seem reasonable to consider likelihood-based confidence intervals for closed population 
capture-recapture methods. In fact, Lebreton, Burnham, Clobert, and Anderson (1992, 
pp. 72-73), briefly discussed the feasibility of likelihood-based confidence intervals for 

open population capt:ure-recapture methods. Also, Morgan and Freeman (1989) provided 
examples of likelihood-based confidence intervals for band recovery data. Beyond these 
two notable examples, there appears to be few, if any. articles that illustrate the use of 

likelihood-based confidence intervals for capture-recapture methods. In particular, there 
appears no published work: that compares the operating characteristics of Waldo boot­
strap. and likelihood-based confidence intervals for closed population capture-recapture 



AwuCATION OF PRoFlUi-L1KEuHooD BASED CoNFIDENCE INTERvAL 133 

estimators. Thus, a comparative study of the three methods would seem in order. 
In the fonowing section we describe the procedme for conslmcting prilfile-likelihood 

based confidence intervals (Venzon and Moolgavkar 1988) for the estimator of N based ' 
on capt1JnH:ecapture data. In the third section, an example of the two sample capture­
recapture experiments is presented. Wahl, bootstrap. and profile-likelihood confidence 
intervals are constructed for these data and comparisons drawn. The fourth section details 
a Monte Carlo simulation study that was designed to gain insight into the characteristics 
of the three described methods of constructing confidence. 

2. PROFILE-LIKELmOOD BASED CONFIDENCE INTERVALS 

Fonowing Venzon and Moolgavkar (1988), let 00 E Rk denote the parameter vector 

to be estimated, and l(0) the log-likelihood for values of °belonging to the parameter 
space a f;; Rk. H edenotes the MLE of 00• then 

~ max 
(2.1)l(9) = °E a 1(9). 

Suppose the jth element of 0, denoted OJ. is the parameter of interest, with all other 
elements of °to be treated as nuisance parameters. Now consider a restriction to the 
parameter space a, where OJ is fixed at some value, say p. If the restricted space is 
defined as aj(p) = {O E a/Oj = P}' then 

(2.2) 

is called the profile likelihood for p. Evaluation of 2.2 involves the maximizatio~ of 
the log-likelihood function with OJ constrained to P (see Evans, Banett, and McDonald 
1994). An approximate 100· (l- 2· cr)% profile-likelihood based confidence interval for 
00; is given by 

(2.3) 

where q(J,a) represents the (1 - a) quantile of the chi-square distribution based on 1 
degree of freedom. 

This approach to the conslmction of confidence intervals is quite general. Although 
this article only discusses the atlnbutes of profile-likelihood based confidence intervals 
for the two-period capture-recapture experiment, the method equally applies to most 
captore-recapture models for two or more capture periods (see Otis et al. 1978). 

3. THE CAPTURE-RECAPTURE EXPERIMENT 

lincoln (1930) and Petersen (1896) independently derived an~ for the size 
of a popuiation based on a design having two trapping occasions. The"first period involves 
the capture, tagging, and release of animals. In the second period, animals are captured 
and their capture status from the first period recorded. As a typical example, consider the 
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cottontail rabbit data of Skalski, Robson, and Simmons (1983) as displayed in a 2-by-2 

contingency table: 

Period 2 
Captured Not captured 

(1) (2) 

Captured (1) 


Period 1 

Not captured (2) 


FII =7 FI2 = 80 

F22= ? 

F.I = 14 

It is typically assumed that the capture frequencies (Fij) follow a multinomial distri­
bution. The log-likelihood function for the capture-recapture experiment is defined as 
follows: 

ij ij 

Here. Pij represents the probability of observing the ijth outcome (i = 1,2 and j = 
1, 2). For the two-period capture-recapture experiment it is typically assumed that the 
observations are independent between capture periods 1 and 2, with marginal probabilities 

PI and P2• respectively. The structure of the Pij are thus simplified: PI I = PI .P2, PI2 = 
PI' (1- P2),P21 = (1- PI)' P2, and P22 = (1 -'PI)' (1- P2). 

For the two sample capture-recapture experiment, a simple closed-form estimator, 
known as the Lincoln-Petersen (LP) estimate (Seber 1982, pp. 59), exists. However, this 
estimatordoes not have finite expectation. Several modifications to the LP estimator have 

been proposed A modified form of the LP estimators was proposed by Evans and Bonett 
(1994) in which .5 is added to each observed frequency. This modification was shown 
to reduce the mean square error and, as was shown more generally by Firth (1993), for 
some measure of accumulated information, say n, also removes the bias of order O(n). 
The estimator of the population size and estimate4 asymptotic standard error, as applied 
to the cottontail data, are respectively 

tr = (FII + FI2 + 1)· (FIl + F21 + 1) _ 1.5 = 174.5, 
FII +.5 

and 

(Ft. + 1) . (F.I + 1) (FJ2 +;5) .. (F.21+ .5) = 43.46. 
(F1l +0.5) 

A symmetric 95% Wald-based confidence interval for the data of Skalski, Robson. and 

Simmons (1983) is 89.3 to 259.7 rabbits. Immediately, one should be concerned because 
the lower limit is less than the 94 captured individuals. As stated previously, this is a 
common trait of Wald confidence intervals for N. Skalski and Robson (1992, pp. 72-76) 

described a method for transformation-based Wald confidence intervals, which tends to 
reduce the problem of inadmissible lower confidence limits. 
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The simplest approach to computing profile-likelihood based confidence intervals 
involves 'a hunt-and-peck procedure (see Venzon and Moolgavkar 1988 for an iterative 

search method). For the lower limit, a value for f3. between the MLE for N and the ' 
number of individuals captured, is selected and the log-likelihood maximized with respect 

to PI and P2 at the fixed value of f3. Using the log-likelihood of (3.1), equations (2.1) 
and (2.2) can be evaluated for a given value of f3. followed by evaluation of (2.3). The 
lower limit of the confidence interval is the f3 such that (2.3) equals the appropriate 
chi-square quantile. The upper limit of the confidence interval is located in a similar 

manner. For the cottontail data. the profile-likelihood based 9?% confidence interval is 
119.1 to 350.2 rabbits. When compared to the symmetric Wald-type confidence interval 
two characteristics should be apparent: first, as one would hope, the lower limit is larger 
than the total number of individuals captured; and second, as one would expect for a 

positively skewed distribution, the interval is not symmetric about the estimate of N. 
Comparing these results with a bootstrapped 95% confidence interval of 123.8 to 320.4 

rabbits (based on 10.000 bootstrapped simulations) we see that the ~file-likelihood 
based confidence interval has far more affinity to the bootstrapped confidence interval 
than the Wald-based confidence interval. 

4. A SIMULATION STUDY 

Clearly, a single example is not definitive. Unfortunately. the small sample prop­
erties of capture-recapture estimators do not lend themselves to analytic solutions. To 
better understand the properties of the different methods described for confidence inter­
val construction, a Monte Carlo simulation study was undertaken. The main pmpose of 
this simulation was to empirically compare the three methods. Comparison of the three 
methods was to be based on the percentage of times that the known population size fell 

Table 1. Simulated Estimate of the Average for the Modified Uncoln-Petersen Estimator of the Pop­
ulation Size N Based on 10,000 Simulated Realizations 

Population size Probability set 
25 50 100 800 PI P2 

17.6 45.5 116.3 859.9 .1 .1 
25.0 60.0 128.1 825.5 .2 .1 
30.6 63.9 117.5 813.2 2 .2 
32.B 60.8 110.5 808.0 .3 .2 
31.9 57.5 106.6 806.0 .3 .3 
30.5 54.B 104.0 804.9 .4 .3 
28.8 53.0 102.B 802.3 .4 .4 
27.6 
26.9 

52.2 
51.8 

102.2 
101.7 

B01.6 
801.2 

.5 

.5 
.4 
.5 . 

26.4 512 101.3 B01.3 .6 .5 
26.0 50.9 100.8 B012 .6 .6 
25.8 50.7 100.7 BOO.7 .7 .6 
25.6 50.5 100.5 BOO.7 .7 .7 
25.4 50.4 100.5 800.4 .8 .7 
25.3 50.3 100.3 800.4 .8 .8 
25.2 50.2 1002 BOO.2 .9 .B 
25.1 50.1 100.1 800.1 .9 .9 
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Table 2. Simulated Estimate of the Average for the Asymptotic Variance Estimator (upper) and Mean 
Square Error (lower) for the Modified Uncoln-Petersen Based on 10,000 Simulated Real­
izations 

Population size Probability set 

25 50 100 800 PI P2 

736.0 4861.7 32761.7 232669.4 .1 .1 
208.2 935.4 7135.2 159225.6 

1422.5 8386.5 37298.1 40437.8 2 .1 
291.7 1987.1 11564.9 39832.7 

2031.1 8367.5 16312.5 14890.3 2 .2 
4972 2622.7 7042.0 14520.7 

2183.7 5319.9 5529.3 8206.6 .3 2 
638.2 1979.4 3076.9 80402 

1729.1 2458.6 1121.5 46662 .3 .3 
586.5 1150.9 979.9 4632.4 

1133.4 918.8 569.2 2957.3 .4 .3 
432.6 529.0 520.1 2971.6 
603.1 259.9 306.9 1861.5 .4 .4 
2632 209.8 286.4 1841.0 
246.4 134.3 193.5 1232.1 .5 .4 
130.0 116.1 187.8 1267.2 
102.3 
662 

82.4
n.4 

123.1 
118.9 

818.0 
837.4 

.5 .5 

49.8 48.0 80.2 544.7 .6 .5 
36.3 452 no 538.7 
21.9 29.7 51.0 362.9 .6 .6 
18.5 26.9 48.8 358.8 
13.5 19.0 32.7 232.6 .7 .6 
11.5 17.9 31.9 234.7 
7.5 11.7 20.8 149.4 .7 .7 
6.5 10.9 20.2 146.5 
4.6 6.9 12.1 87.0 .8 .7 
3.6 6.1 11.3 87.5 
2.5 4.0 7.0 50.8 .8 .8 
2.0 3.6 6.8 50.7 
1.2 1.8 3.2 22.6 .9 .8 
0.9 1.6 3.0 22.7 

.5 .8 1.4 10.0 .9 .9 

.4 .7 1.3 9.9 

above and below the simulated confidence intervals, relative to the nominal value of 2.5%. 
Because captm:e-recapture estimators and their asymptotic variance estimators areknown 
to be biased, the simulated mean for estimator and variance estimator, along with the 
mean square error, will be important when considering the simulation results. 

The matrix-based language GAUSS (Aptech 1993) was used for all aspects of the 
simulation study. Multinomial observations for the two sample capture-recapture experi­
ment were generated for a specific population size (25, 50, 100, and 800) and probability 
structure using a uniform random-number generator. Each combination of population 
size and probability structure was simulated 10,000 times. For each combination, the 
Wald and profile-Iilrelihood 95% confidence intervals were constructed and assessed for 
inclnsion of the known population size. 

The computational burden necessary to simulate the propertfes of the bootstrapped 
confidence intervals required some downsizing. The number of primary simulations per­
fotmed per population size and" probability structure were reduced from 10,000 to 1,000 
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Table 3. Simulation Results for WaId, Profile-Ukelihood, and Bootstrapped 95% Confidence Intervals 
onN 

25 

Population size 
50 100 BOO 

Probability S9! 
P, P2 

0.0 
0.0 
0.0 

27.9 
2.9 

15.8 

.0 

.0 

.0 

21.7 
3.3 
5.7 

.0 

.0 

.0 

17.5 
2.3 
1.8 

.0 

.8 
2.1 

8.4 
1.6 
3.2 

.1 .1 

0.0 
0.0 
0.1 

19.0 
2.9 
3.7 

.0 

.0 

.1 

16.4 
2.7 
2.4 

.0 

.1 
1.1 

13.8 
2.2 
2.5 

.0 
1.0 
2.9 

7.0 
1.6 
1.8 

.2 .1 

0.0 
0.0 
0.4 

15.0 
2.9 
2.7 

.0 

.2 
1.6 

12.7 
2.7 
3.0 

.0 

.7 
2.9 

10.2 
2.1 
2.5 

.2 
1.0 
2.7 

5.4 
1.5 
2.5 

.2 .2 

0.0 
0.3 
1.0 

13.0 
3.2 
2.3 

.0 

.4 
2.1 

. 10.8 
2.7 
3.2 

.0 

.9 
3.4 

8.6 
2.1 
2.5 

.4 
1.1 
2.0 

4.9 
1.8 
2.7 

.3 .2 

0.0 
0.7 
1.4 

12.2 
3.6 
1.4 

.0 

.8 
1.6 

9.0 
2.5 
3.0 

.0 
1.3 
2.4 

7.2 
2.4 
3.1 

.8 
1.6 
2.3 

4.1 
1.7 
2.3 

.3 .3 

0.0 
0.9 
2.0 

10.5 
4.2 
1.7 

.0 
1.2 
2.6 

8.2 
3.1 
1.6 

.0 
1.2 
2.6 

7.2 
3.1 
2.6 

1.0 
1.9 
2.6 

4.1 
2.3 
2.0 

.4 .3 

0.0 
1.8 
2.4 

9.5 
4.0 
2.5 

.0 
2.3 
2.5 

7.9 
3.3 
1.5 

.0 
2.2 
2.7 

6.2 
2.7 
1.5 

1.1 
2.1 
2.4 

3.9 
2.8 
2.3 

.4 .4 

0.0 
2.3 
2.0 

9.0 
5.2 
2.1 

.0 
2.5 
2.1 

6.8 
3.9 
2.3 

.1 
2.9 
2.4 

5.7 
3.5 
2.5 

1.6 
2.9 
3.0 

3.9 
3.5 
2.6 

.5 .4 

0.0 
2.3 
2.0 

8.3 
6.0 
1.6 

.0 
3.2 
3.0 

6.4 
5.0 
2.0 

.2 
3.2 
2.6 

5.2 
4.1 
3.0 

1.4 
2.6 
2.6 

3.6 
1.9 
1.9 

.5 .5 

NOTE: Values are the percentage that the Wald (upper). profile-like/ihood (middle), 
and bootstrapped (lower) confidence intervals did not rontain the appropriaIe 
population size. 

for populations of size 25, 50, 100, and 800. This procedure involved the generation 
of a multinomial realization for a given population size and probability structure, fol­
lowed by the computation of the population size. For each simulated realization of the 
Faj, h was computed and the cell probabilities estimated as Pij = Fijlh. Substituting 
these estimates for the parameters of the multinomial distribution, 1,000 bootstrapped 
realizations were generated and the estimate of N computed for each bootstrapped re­
alization. These 1,000 estimates were ordered and a confidence interval constructed by 
selecting the appropriate values (the 25th and 975th for a 95% confidence interval). This 
approach, known as the percentile method (see Efron and TIbsbirani 1993,· chap. 13), 
was used for each of the 1,000 confidence intervals constructed for a given population 
size and probability structure. As with the Wald and profile-likelih~ methods, each 
bootstrapped confidence interval was assessed for inclusion of the known population size 
and the results accumulated. 
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Table 3. Continued 

Papulation size Probability set 

25 50 100 800 PI P2 

0.0 8.3 .0 6.8 .3 5.0 1.3 3.6 
2.3 6.2 2.7 5.8 2.9 4.5 3.2 4.3 .6 .5 
22 2.1 2.3 32 2.0 2.1 3.1 2.7 

0.0 7.2 .0 5.8 .3 5.1 1.7 3.3 
2.2 6.1 2.5 5.0 3.0 5.0 3.6 4.2 .6 .6 
1.9 2.5 3.1 2.3 2.1 2.1 22 2.1 

0.0 6.7 .0 6.1 .4 5.0 1.7 3.4 
1.8 5.8 2.7 5.6 3.3 5.1 3.8 4.4 .7 .6 
32 1.6 2.7 2.7 2.2 2.5 1.9 1.8 

0.0 7.0 .0 6.1 .4 5.0 1.6 3.0 
1.£ 5.8 2.4 5.2 2.9 4.9 3.5 4.0 .7 .7 
2.5 2.0 2.6 1.5 1.7 2.3 2.1 2.9 

0.0 6.9 .0 5.7 .3 4.8 1.7 3.4 
0.7 5.8 1.7 4.6 2.4 4.4 3.2 4.1 .8 .7 
4.5 1.9 3.4 1.6 1.8 3.3 2.3 2.2 

0.0 62 .0 6.1 .2 4.8 1.6 3.4 
0.3 .4.5 .9 4.3 2.1 42 2.9 3.5 .8 .8 
9.8 2.3 4.5 2.5 2.0 2.3 2.4 2.1 

0.0 7.2 .0 6.6 .0 5.6 1.5 3.7 
0.7 32 .1 4.0 .5 4.0 2.2 3.2 .9 .8 

24.3 1.7 8.1 2.1 3.6 2.5 2.5 2.7 

0.0 6.6 .0 6.4 .0 5.8 1.1 3.8 
2.0 1.5 .5 3.0 .0 3.4 1.4 . 2.9 .9 .9 

422 .8 23.1 1.9 5.5 1.8 2.3 3.0 

NOTE: Values are the percentage that the Wald (upper), profile-likelihood (middle), 
and booIstrapped (lower) confidence intervals did not contain the appropriate 
population size. 

The results of these simulations are found in Tables 1, 2, and 3. Table 1 shows 
the performance of the estimator for each combination of population size and probabil­
ity structure. Table 2 compares the average estimated variance and the empirical mean 
squared error. Table 3 gives the percentage, for each method of confidence interval con­
struction, in which the known population size fell below the lower limit and above the 

upper limit. 

5. DISCUSSION 

As expected, the simulation results indicate that the Wald-type confidence interval 
has very poor operating characteristics, excepting the results for the large population 

(N = 800) and moderate capture probabilities (]'i ~ .3). Beside the issue of nonnormal­
ity, Wald confidence intervals also suffer from the poor performance of the asymptotic 

variance estimator (see Thble 1). Admittedly, the Wald confidence interval has simplic­
ity as an attribute, but little more. On the other hand, the profile-likelihood confidence 
interval, and especially the bootstrapped confidence interval, performed well in both the 
·mudl Bod large population cases and over nearly all ranges of capture probabilities. The 
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bootstrapped cOnfidence intervals were quite exceptional, except for the case of a small 

population (N = 25 or possibly 50) with small or large capture probability (Pi :s .2 and 

Pi ;;:: .8). The small variation among adjacent values in the percent failure rate for the­

bootstrapped confidence interval is probably from use of 1,000 bootstrapped estimates 
as opposed to use of some larger value. Efron and Tibshirani (1993, chap. 13) indicated 
that construction of bootstrapped confidence intervals requires a minimum of 1,000 boot­

strapped estimates, but that a larger number. say 10,000, may be necessary to obtain more 

stable estimates. Unfortunately, using such a large value would have made the simulation 

study unreasonably long in duration. A second source of variation among adjacent values 

in the percent failure rate for the bootstrapped confidence interval may be due to random 

variation in the simulation based percent failure estimates. The standard error for the 

bootstrapped percentage estimates based on 1,000 simulations is approximately .5%; all 

other simulated peicent-failure estimates, based on 10,000 simulations, would have an 

approximate standard error of .2%. This latter source of variation is sufficiently large to 

explain the variation observed in the bootstrap percent failure rate. 

The profile-likelihood confidence interval appears to be an excellent alternative to 

both the Wald and bootstrapped confidence intervals. It has operating characteristics that 

closely resemble the bootstrapped confidence interval, even swpassing the bootstrapped 

method for small or large capture probabilities (Pi :s .2 and Pi ;;:: .8). It also is far less 

costly from a computational standpoint 

For the simple two period capture-recapture experiment, the computer time required 

to construct a bootstrapped confidence interval was nearly two orders of magnitude longer 

than the profile-likelihood confidence interval. 

Most biologists do not rely on the simple two period capture-recapture design as the 
basis for collecting capture data and subsequently estimating the population size. More 

typical are designs with three to ten capture periods. These designs allow for more robust 

estimation of the population size, but require data structures, and hence models, that are 

far more complicated. Attempting to cOnstruct bootstrapped confidence intervals for such 

complicated situations would require large amounts of computer time, possibly days. The 
profile-likelihood approach, although more time consuming than the Wald-based method, 

is much less time consuming than the bootstrap approach and is a method that deserves 
consideration. . 

[Received November 1994. Revised January 1995.1 
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