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Abstract 

This paper presents and illustrates a new nonsequential design procedure for simultaneous 
parameter estimation and model discrimination for a collection of nonlinear regression models. 
This design criterion is extended to make it robust to initial parameter choices by using 
a Bayesian design approach, and is also extended to yield efficient estimation-discrimination 
designs which take account of curvature. 

AMS classification: Primary 62K05; Secondary 53-00 
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1. Introduction 

For a given process, several regression model functions can often be given which do 
a reasonable job of modelling the underlying mechanism. For example, the Gompertz, 
Logistic, Richards, Morgan-Mercer-Flodin, and Weibull sigmoidal growth curves 
discussed in Ratkowsky (1983) and Seber and Wild (1989) all provide good fits to the 
agricultural data sets given in Ch. 4 of Ratkowsky (1983). Another example is 
discussed in Box and Hill (1967), in which at least ten rival model functions are used to 
adequately describe the water gas shift reaction: 
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Design methDdDIDgy fDr a cDllectiDn Df nDnlinear regressiDn mDdels has generally 
fDcused Dn either efficiently estimating all Df the mDdel parameters Df the collectiDn 
(i.e., parameter estimatiDn) Dr highlighting which Df the mDdel functiDns is mDre 
apprDpriate fDr describing the underlying process (i.e., mDdel discriminatiDn). FDr 

example, several Df the design prDcedures given in Lauter (1974a, 1976) and Steinberg 
and Hunter (1984) fDCUS sDlely Dn efficient parameter estimatiDn, whereas the prDced­
ures given in BDX and Hill (1967), Hill (1978), AtkinsDn (1988) and Pukelsheim and 
RDsenberger (1993) fDCUS sDlely Dn mDdel discriminatiDn. 

As estimatiDn-Dnly design procedures tend to' do. a rather pDDr jDb Df mDdel 
discriminatiDn, and vice versa, a cDmbined estimatiDn-discriminatiDn strategy is 
clearly needed. Sequential design procedures fDr simultaneDus parameter estimatiDn . 
and mDdeldiscriminatiDn, such as thDse develDped in Hill et al. (1968) and BDrth 
(1975), are Dften impractical. Lauter (1974a) gives a nDn-sequential design prDcedure 
fDr estimatiDn and discriminatiDn fDr two. linear mDdels. This paper prDvides a nDn­
sequential design procedure fDr simultaneDus estimatiDn and discriminatiDn for 
a cDllectiDn Df nDnlinear regressiDn mDdels. This new criteriDn, which depends Dn an 
initial chDice Df the mDdel parameter vectDrs, is extended to. make it rDbust to. this 
initial parameter ChDice using the Bayesian design apprDach Df Lauter (l974b) and 
ChalDner and Larntz (1989), ExtensiDns to' take aCCDunt Df the curvature assDciated 
with the mDdel functiDns are also. given. 

In SectiDn 2, design theDry and estimatiDn-Dnly. and discriminatiDn-Dnly design 
procedures are reviewed. We intrDduce and illustrate Dur estimatiDn-discriminatiDn 
procedure in SectiDn 3, and prDvide Bayesian and secDnd-Drder extensiDns in SectiDn 4. 

2. Background 

2.1. Design theory 

The design prDblem fDr the single nDnlinear mDdel 

Yi=rJ(Xi,fj)+8;, i l, ... ,n, (2.1) 

typically invDlves chDDsing a design with n design pDints, ~, to. estimate SDme function 
Dfthe p-dimensiDnal parameter vectDr, fj, with high efficiency. Here ~ can be written as 

, {Xb X2' ... ,Xn }, (2.2) 
co 1> CO2, ... , COn 

where the design pDints x I, X2, •.. ,Xn are elements Df the design space X and are nDt 
necessarily distinct, and assDciated weights COl> CO2, ••• , COn are nDnnegative real num­
bers which sum to. Dne. 

In cDntrast to. the expressiDn given in (2.2), , can be thDught Df in terms Df its 
r(r ~ n) distinct design pDints, $ 1> $2, ... ,s" called its suppDrt pDints, and their aSSD­
ciated design weights ..1.1> ..1. 2 , ••• ,J'T' Whenever nA.i is integral fDr each i, (is said to. be an 
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exact design; otherwise, it is said to be a discrete design (see Rasch, 1990). We use 
~ here to denote a discrete design with n design points and ~c to denote an exact 
n-point design. Whether a design is discrete or exact, nA.j can be thought of as the 
'number of observations' taken at the experimental level Sj. Throughout this paper 
optimal designs will be sought in the class of all discrete designs. 

When the residuals in (2.1) are uncorrelated normal random variables with zero 
mean and constant variance (12, the (Fisher) information per observation is given by 

M(~,Q) = ,t OJj(i3~~i») (a~~j»)T VTQV. (2.3) 
I~ 1 _ _ 

Here Vis the n x p Jacobian of I'J with the ith row equal to (0rt(Xj)/OQ)T, and Q = diag 
{w h ... , OJn}. Also, the variance function (White, 1973) of 'f/ is given by 

d( J' 8) = (O'f/(X»)T M- l (J' 8) (017(X») (2.4)x, ,>, - oQ '>'- oQ ' 

where O'f/(x)/iJf! is of dimension p x 1, and a generalized inverse is used whenever M is 
singular. 

For the (single) nonlinear model given in (2.1), optimal designs typically minimize 
some convex function ofM- l 

. For example, designs which minimize the determinant 
IM- l (~,Qo)1 are called the locally D-optimal, and those which minimize the maximum 
(over x E X) of d(x, ~,Qo) are called locally G-optimal. The term 'locally' is used here to 
emphasize the fact that the design is based on an initial parameter choice, QO; see 
Chernoff (1953) and Box and Lucas (1959) for a discussion of local optimality. 
Further, the General Equivalence Theorem (Kiefer and Wolfowitz, 1960; White, 1973) 
establishes that D-optimal designs are equivalently G-optimal over the class of 
discrete designs. One advantage to using D-optimal designs in regressions settings is 
that these designs are invariant to a (even nonlinear) reparameterization of the model 
function. Other optimality criteria are discussed in Pazman (1986), Atkinson and 
Donev (1992), and Pukelsheim (1993). 

Optimal designs can be obtained with computer programs which minimize the 
particular objective function by using a numerical search procedure such as the 
OPTMUM algorithm provided in the GAUSS I programming language. The GAUSS 
computer programs used to obtain optimal designs given here (available from the first 
author) require starting values for the design points and weights, and use a numerical 
search procedure which alternates between four numerical algorithms to obtain the 
corresponding optimal design. 

2.2. Parameter estimation for a collection of nonlinear models 

Often several model functions exist to describe a given process. Suppose that the 
m model functions 'f/l (X,Ql), ... , rtm(x,f!m) are available, where Qi, the parameter vector 

IGAUSS is a trademark of Aptech Systems, Inc., Kent, WA. 
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of the ith model, is of dimension Pi x 1. Our focus here is on efficient estimation of the 
P = P1 + ... + Pm parameters in the collection C = {"II, •.. , "1m}. 

Corresponding to the ith model function in C is the Pi x PI information matrix, 
MI(~,1!i) = viQ "I, where the Jacobian matrix "I, is of dimension n x Pi' Here the 
number of support points of ~ must be greater than or equal to the maximum of the 
p/s so that each 1!i is estimable. Further, the estimation efficiency (Atkinson and 
Donev, 1992, p, 116) associated with the ith model function is given by 

(2.5) 

where ~t is the locally D-optimal design for the jth model function. The estimation 
efficiency is a relative measure of the information contained in ~ regarding the model 
parameters 1!b it compares the estimation information of the arbitrary design ~ with 
the estimation information of the D-optimal design, and the exponent in (2.5) reflects 
the number of parameters being considered. 

When the nonnegative model weights n l , ... , x'" (which sum to unity) are chosen to 
reflect prior probabilities associated with the model functions "110 ... ,1'/"" designs may 
be obtained to maximize LXi log Ei . Designs which maximize this weighted sum of the 
log estimation efficiencies, called locally DE-optimal designs here, equivalent maxi­
mize the estimation measure 

(2.6) 

where 1!0 = (f!?T, ... ,1!~T)T is an initial choice of 1! = (f!T, ... ,1!~)T. Eq. (2.6) is a slight 
generalization of the estimation measure used in Atkinson and Donev (1992, p. 253), 
where focus is on parameter estimation in polynomial models. In the following 
example, we obtain a locally DE-optimal design for two nonlinear models. 

Example 1. Two rival growth model functions are the one-parameter simple ex­
ponential model (SE1) and the one-parameter inverse linear model (ILl) given 
respectively by 

(2.7) 

For the initial parameter choices e? 1 0.1 and ()~1 0.2, and design space X = [0, 
30], the equal-interest (i.e., XI = n2 = 1:) locally DE-optimal design (over all discrete 
designs) takes all observations at x = 7.81. By way of comparison, the locally D­
optimal design for the first model function puts aU weight at x = 10.0 and the locally 
D-optimal design for the second model function puts all weight at x = 5.0; the 
estimation efficiencies (see Eq. (2.5) above) of the DE-optimal design relative to these 
designs are El = 94% and E2 = 91 %. 
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Incidentally, the initial parameter value ogl = 0.2 was chosen here since this is the 
least·squares estimate obtained for 021 when we used selected data points from the 
SEI model with all = 0.1. 

We note that the estimation measure given in (2.6) is preferred to the S-optimality 
estimation measure given in Lauter (1974a, 1976) since the measure given in (2.6) is 
invariant to a (linear or nonlinear) reparameterization of the model function, whereas 
the measure of Lauter is not. 

2.3. Model discrimination for a collection of nonlinear models 

Suppose now that our goal is to obtain a design that highlights which of the model 
functions in the collection C is best in describing the given process under study. The 
'Bayesian' augmented model function for the collection C is of the form 

(2.8) 

where the positive weights 1[J, ... , 1[m (which sum to one) are again chosen to reflect 
prior probabilities associated with the model function of C. The n x p Jacobian for this 
augmented model is 

v = a1j = [1[1 VI :1[2 V2 : ... :1[ V] (2.9)a§ ... m m , 

which is of dimension n x p where n ;;;:: p. Also, the information matrix associated with 
the augmented model is (2.8) is M(e,f!) = VT .QV. In what follows, we assume that the 
columns of V are linearly independent. Inherent in this assumption is the requirement 
that no more than one of the m models in C be a linear model or have a linear 
component; see Pukelsheim and Rosenberger (1993) for the case where the models of 
interest are each linear models and Atkinson and Donev (1992) for the case where at 
least two of the models have linear components. 

The discrimination efficiency (Atkinson and Cox, 1974, p. 323) associated with the 
jth model function of C is given by 

(2.10) 

where Si = P - Pi and ei maximizes IM(e,f!°)I/IMi(e,§?)I. The discrimination efficiency 
is a relative measure of the information in efor detecting departures from the ith 
model function in the direction of the other model functions; it compares the 
discrimination information of the arbitrary design ewith the discrimination informa­
tion of ei, and the exponent reflects the number of parameters in the collection 
C which are not in the ith model function. 

When the nonnegative model weights 1[1,,,,, 1l:m (which sum to unity) are again 
chosen to reflect prior probabilities associated with the model functions '11,· .. , 11m, 
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designs may be obtained to maximize InilogDi' Designs which maximize this 
weighted sum of the log discrimination efficiencies, called locally DD-optimal designs 
here, equivalently maximize the discrimination measure 

D(e,ft) = f ni log IM(e,~?I, (2.11) 
i= I 51 IMI(e,~I)1 

again where ~o = W?T, ... ,~~T)T is an initial choice of ~ = Wi, ... ,~!)T. Locally 0 0 ­

optimal designs highlight the adequacy of the m model functions in the collection C. 
Note that the discrimination measure given in (2.11) represents a slight generalization 
of the equal-interest discrimination measure presented in Atkinson and Cox (1974), 
where each of the model weights is chosen to equal 11m. The following example 
illustrates equal-interest model discrimination. 

Example 1 (continued). For the SE1 and ILl model functions and the initial para­
meter choices given in Section 2.2, the equal-interest locally DD-optimal design (over 
all discrete designs) for n = P = 2 design points associates the weight WI 0.60 with 
the point Xl = 1.73, and the weight W2 = OAO with the point Xz 13.19. Further, the 
discrimination efficiencies (Eq. (2.10)) associated with this design are Dl D2 = 96%. 

Not surprisingly, the estimation efficiencies associated with the design given in the 
previous example are only El = 46% and E2 = 60%, illustrating that designs which 
do a good job of discrimination can do a rather poor job of parameter estimation (and 
vice versa). What is therefore needed is a design criterion which combines the dual 
goals of efficient parameter estimation and model discrimination. 

3. Simultaneous estimation and discrimination for a collection of nonlinear models 

Instead of treating parameter estimation and model discrimination for the collec­
tion of model functions C as separate problems, we now present a design procedure 
which provides for some control of the efficiency of both parameter estimation and 
model discrimination. The estimation and discrimination measures given in (2.6) and 
(2.11) can be combined into the single measure 

B(~,~) = IXE(e,Q) + (1 - a)D(e,Q) 

m 

blogIM(e,~)1 + L: cj!ogIMi(';,Qi)l, (3.1) 
i= I 

where IX E [0, 1], b = [1 - a)L(nJs;), and Ci = IXnJpi (1 rx)nJsi' Here IX controls the 
degree of emphasis placed on estimation relative to discrimination. Note that the 
estimation-discrimination measure in (3.1) includes the alternate measure 

B'(e,Q) = :* E(e,Q) + 1;;* A. D«(,Q) (3.2) 
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as a special case by choosing 

}, E* 
i:J. = -:-},-+-(-1-A:-:)R-:- for R = D* and AE [0, 1]; (3.3) 

here E* and D* are the maximum values of E(e,!!) and D(e,!!), respectively. 
An obvious advantage of B(e,!!) in (3.1) over B'(e,Q) in (3.2) is that B(e.Q) is easier to 
use since it does not require knowing E* and D*. Designs which maximize B(~,Qo) in 
(3.1), called locally DB-optimal designs here, are equivalently B-optimaJ (see Lauter, 
1974a), and provide for simultaneous efficient parameter estimation and model 
discrimination. 

Example 1 (continued). For the SEl and ILl model functions and the initial para­
meter choices in Section 2.2, the locally DB-optimal design (over all discrete designs) 
with the weights 0: = 71:1 = 71:2 = t (hereafter called the 'equal-interest' DB-optimal 
design) for n = 2 design points places the weight 00 =! at each of the points Xl = 2.28 
and X2 11.99. The estimation and discrimination efficiencies associated with this 
design are El = 64%, E2 = 72%, Dl = 93% and D2 = 83%. To the extent that these 
discrimination efficiencies exceed the estimation efficiencies, this design tends to favor 
discrimination over estimation. 

An alternative strategy is to maximize B(e,QO) in (3.1) subject to the constraint that 
EI and E2 exceed some constant, c. For example, for c = 70'%, the constrained 
DB-optimal design for n = 2 observations associates the weight WI = 0.40 with the 
point XI = 2.51 and the weight 002 = 0.60 with the point X2 = 11.49. For this latter 
design, the estimation and discrimination efficiencies are El = 70%, E2 = 75%, 
DI 85% and D2 = 68%. Of course, another way to obtain a design with higher 
estimation efficiencies would be to choose 0: in (3.1) to exceed t, although the exact 
relationship between a. and the estimation and discrimination efficiencies is not readily 
apparent. 

In all examples studied, 'equal-interest' DB-optimal designs had higher discrimina­
tion efficiencies than estimation efficiencies. This phenomenon is analogous to the 
experience associated with the sequential estimation-discrimination design criterion 
presented in Hill et al. (1968), in which initial runs tend to focus on model discrimina­
tion and subsequent runs tend to focus on parameter estimation once the model has 
been identified. 

The variance function (Lauter, 1974a) which corresponds to the weighted sum of 
information matrices in (3.1) is given by 

dg(x. ~.!!) bd(x, e,!!) + L 
m 

cjdi(x, e,Qi), (3.4) 
i=1 

where d(x,e.Q), ddx.e.Qd•...• d",(x.e,Q",) are the variance functions associated with 
'1 in (2.8), 'Yfl> ••• , '1... , respectively, and are of the form given in (2.4). Further, the 

http:ddx.e.Qd
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following extension to the General Equivalence Theorem and subsequent corollary 
are useful in obtaining DB-optimal designs. 

Theorem 3.1. DB-optimal designs (over the class of all discrete designs) can be equiva­
lently characterized by the following conditions: 

1. e* maximizes B(e,Q); 
2. e* minimizes the maximum (over X) of dB(x, e,Q); 
3. the maximum of dB(x, e*,~) over X is equal to one. 

Corollary 3.1. The variance function dB(x, (*, 0 attains its maximum value at the 
support points of e*. 

The proof of this theorem is similar to those of other extensions to the General 
Equivalence Theorem given in Whittle (1973) and Lauter (1974a), and is omitted here. 
Further, Corollary 3.1 can be used to show that a given design is indeed DB-optimal, 
as is illustrated in the following example. 

Example 2. Suppose that two rival model functions for a given growth process are the 
SEI model in (2.7) with initial choice O? I = 0.1 and the quadratic model, 
'12 = Po + PIX + P2X2, over the range X = [0,30]. The equal-interest DB-optimal 
design (over all discrete designs) for n = p 4 design points associates the weights 
OJ = 0.20, 0.34, 0.27, and 0.19 with the points X 0,6.50, 19.61, and 30, respectively. 
The corresponding variance function, graphed in Fig. 1, verifies that this design is 
indeed DB-optimal since this function reaches its maximum value (of y = 1) at the 
support points of the design. Incidentally, designs of this form can be converted into 
practical designs by using the algorithm presented in O'Brien and Rawlings (1993). 

4. Extensions 

Two important criticisms of design procedures based on information matrices of 
the form given in (2.3) are that these procedures are often valid only when the true 
vector of parameters is in a neighborhood of the initial choice (cr., Pilz. 1991), andthat 
these procedures take no account of the curvature of the corresponding expectation 
surface. In this section, we demonstrate how the estimation-discrimination design 
procedure presented in the previous section can be extended to temper the impact of 
these potential problems. 

4.1. A Bayesian estimation-discrimination procedure 

For a single nonlinear model function, Bayesian D-optimal designs have been 
introduced in Lauter (1974b) and Chaloner and Larntz (1989) so as to relax the 
sensitivity of locally D-optimal designs to the initial parameter choice. Bayesian 
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Fig. 1. Variance function for Example 2, 

D-optimal designs maximize the expected log information, Jlog IM(~,ml p(f!) dJ! where 
p(f!) is some prior distribution function hypothesized for J!. Arumugham (1992) shows 
that for the Weibull model function Bayesian D-optimal designs are preferred to 
locally D-optimal designs when some uncertainty exists regarding the true value of J!. 
Further, Chaloner and Larntz (1989) report that as the dispersion of p(f!) increases, so 
too does the number of support points of the corresponding Bayesian D-optimal 
design. 

In a similar manner, we define Bayesian DB-optimal designs as those which 
maximize JB(e,mp(f!)dJ! for B(~,J!) given in (3.1) and for a given prior distribution 
function. An extension of the General Equivalence Theorem to Bayesian DB-optimal 
designs is straightforward, and is omitted here; and an analogue of Corollary 3.1 may 
be used to show that a given design is indeed Bayesian DB-optimal. The following 
example highlights the difference between Bayesian and non-Bayesian DB-optimality 
designs. 

Example 1 (continued). For the SEl and ILl model functions given in (2.7), suppose 
that 811 and (J21 are independently and uniformly distributed on the intervals [0.07, 
0.13] and [0.15, 0.25], respectively. For this prior distribution, the equal-interest 
Bayesian DB-optimal design (over all discrete designs) for at least 2 design points put 
the weight OJ = ~ at each of the points Xl = 2.22 and X2 = 11.65. This design repres­
ents a slight shift from the (non-Bayesian) locally DB-optimal design, denoted ~b 
which associates the weight OJ = ~ with each of the points Xl = 2.28 and X2 = 11.99. 
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In contrast, if Oil and 021 are independently and uniformly distributed on the 
intervals [0.05, 0.15J and [0.10, 0.30J, the Bayesian DB-optimal design for at least 
3 design points, denoted ~2' associates the weights ill = 0.42, 0.45, and 0.13 with the 
points x 2.31, 11.15, and 30, respectively. This increase in the number of support 
points for Bayesian DB-optimal designs with an increase in uncertainty about fl is 
analogous to the experience of Chaloner and Larntz (1989) where Bayesian D-optimal 
designs are obtained for a single nonlinear model. 

To compare the robustness regardingJl ofthis Bayesian DB-optimal design (~2) with 
that of the locally DB-optimal design (e d, we may use the DB-efficiency 

EFF (4.1) 

evaluated at the extremes of the region 

where M corresponds to the Jacobian given in (2.9). Since the OB-efficiencies at the 
points (0 1 h 02d = (0.05,0.10), (0.05,0.30), (0.15,0.10) and (0.15,0.30) are EFF = 0.90, 
0.99, 0.49 and 1.01, respectively, we conclude that the Bayesian DB-optimal design 
may be preferred to the locally DB-optimal design since the efficiency of the latter 
design can be very poor as Jl moves away from flo' in certain directions (e.g., towards 
ell = 0.15,021 = 0.10). 

4.2. Quadratic estimation-discrimination design criteria 

For a single nonlinear model function, quadratic design criteria take account of the 
curvature of the corresponding expectation surface; see Bates and Watts (1980, 1988) 
and Seber and Wild (1989) for a discussion of curvature and O'Brien (1993) for 
a discussion of quadratic design criteria. Two such criteria are the 02-optimality 
design criterion presented in O'Brien and Rawlings (1993) and the Q-optimality 
design criterion given in Hamilton and Watts (1985). In this section, the estima­
tion-discrimination criterion given in Section 3 is extended to yield designs which 
take account of curvature. 

4.2.1. 02B-optimality for a collection ofnonlinear models 
For a nonlinear model of the form (2.1), designs which minimize the second-order 

generalized mean squared error (G MSE) of the least-squares estimate of fl, called 
Oroptimal designs, are introduced and illustrated in O'Brien and Rawlings (1993) 
and highlighted in Clarke and Haines (1995). D2-optimal designs minimize the 
determinant of the second-order MSE 

G = G(~,fl) S + bb', (4.2) 

http:0.15,0.30
http:0.15,0.10
http:0.05,0.30
http:0.05,0.10
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where"S is the corresponding second-order variance estimate of Clarke (1980) and b is 
the second-order bias estimate of Box (1971). Since G is a function of~, either locally 
Droptimal designs or Bayesian D2-optimal designs are obtained. 

One extension of the estimation-discrimination design criterion presented in Sec­
tion 3 to take account of curvature is to use Droptimality in place of D-optimality in 
Eq. (3.1). Thus, instead of obtaining designs to maximize B(~,~) given in (3.1), designs 
can be chosen to minimize the second-order estimation-discrimination measure 

B2(~,f!) = blogIG(~,~)1 + L 
m 

cilogIGi(~'~i)l· (4.3) 
i~ I 

Here G is given in (4.2), and G j = Si + bib; where Si and bi are the second-order 
variance and bias estimates associated with the ith model function. 

Whereas estimation-discrimination designs based on D-optimality are called 
DB-optimal designs, those based on Droptimality are called D 2B-optimal here; and 
since D 2B-optimal designs are functions of ~ and (1, either locally D2B-optimal designs 
or Bayesian D2B-optimal designs are obtained. The following example illustrates the 
difference between locally DB-optimal and locally D 2B-optimal designs. 

Example I (continued). For the SEI and ILl model functions and initial parameter 
choices given in Section 2.2, the equal-interest locally DB-optimal design associates 
the weight W = -! with each of the points XI = 2.28 and X2 = 11.99. In contrast, the 
equal-interest locally D2B-optimal design using (10 = 0.3 places the weight WI = 0.69 

at the point XI = 1.72, and the weight Wz = 0.31 at the point X2 = 10.87, representing 
a nontrivial shift from the locally DB-optimal design. 

Various curvature measures have been introduced to assess the degree of nonlin­
earity (or curvature) of the corresponding expectation surface. Two important 
measures of the curvature associated with a particular design are the marginal 
curvature measure of Clarke (1987) and the 'measure of the importance of the biases' 
ofBox (1971, p. 179). Analogous to the bias measure ofBox (1971) is our bias-variance 
ratio (BVR), given by 

BVR = IGI -lSI =.1 b'S- lb. (4.4)
plSI p 

Our BVR measure is preferred to the bias measure of Box (1971), since, whereas Box's 
measure compares a second-order bias estimate with a first-order variance estimate, 
ours compares a second-order bias estimate with a second-order variance estimate. 

For this example, the length of the p x 1 marginal curvature vector associated with 
the DZB-optimal design is 7% less than that of the DB-optimal design, and the length 
of the m x 1 BVR vector associated with the D 2B-optimal design is 2% less than that of 
the DB-optimal design. It follows that the D 2B-optimal design results in a slight to 
moderate reduction in curvature when compared with the DB-optimal design. 
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A second quadratic design procedure is presented in Hamilton and Watts (1985), 
and in the following section this procedure is adapted to achieve parameter estimation 
and model discrimination for the model functions in the collection C. 

4.2.2. Qrroptimality for a collection ofnonlinear models 
The n x P Jacobian associated with the Bayesian augmented model function given 

in (2.8) is 

v = 8" = ['11:1 V1:'1I:2 V2: ••• :'11: V.] (4.5)at] .. . mm 

and the corresponding n x P x P array of second derivatives is 

(4.6) 

where each Wi = 82"i/8fH is of dimension n x Pi x Pi. 

Further, for the single model (2.1), the second-order approximation to the volume of 
the 100(1 a:)% confidence region for fi developed in Hamilton and Watts (1985) can 
be wri tten as 

(4.7) 

where d and k are constants, and D and N are functions of W; detailed expressions for 
these terms are given in Hamilton and Watts (1985). Designs which minimize v(~,fi) in 
(4.7), called Q-optimal designs, are discussed in O'Brien (1992). As Q-optimal designs 
are functions of fl and (1, either locally Q-optimal designs or Bayesian Q-optimal 
designs are obtained. 

A second extension to the estimation-discrimination design criterion presented in 
Section 3 to take account of curvature is to use Q-optimality in place of D-optimality 
in Eq. (3.l). Thus, instead of obtaining designs to maximize B(~,fi) given in (3.1), 
designs can be chosen to minimize the second-order estimation-discrimination 
measure 

BQ(~,fl) b log v(~,fl) + L 
m 

Ci log vi(~,fli)' (4.8) 
;=1 

where v is the volume given in (4.7) corresponding to the augmented model function 
(2.8) and Vi is the volume corresponding to the ith model function of the collection C. 
Designs which minimize BQ(e,fiO) in (4.8), called locally QB-optimal here, use the 
initial parameter choices flo and (10. The following example highlights the difference 
between locally DB-optimal and locally QB-optimal designs for model functions which 
possess a moderate amount of curvature. 



89 T.£. O'Brien. J.D. Rawlings/Journal ofStatistical Planning and Inference 55 (1996) 77-93 


Example 3. A rival to the two-parameter intermediate product (IP2) model function 


(4.9) 

is the two-parameter inverse quadratic (IQ2) model function 

°21 X 
(4.10)tl2 = (1 + 8 x)(1 + 022 ) (for x ~ 0; ( 2 ), 022 > O}.

X21 

Suppose that reasonable initial parameter choices are (O? 1, O? 2, O~ 1> Og2) (0.7, 0.2, 
1.8, 0.2) and (To = 0.1, and that the corresponding design space is the interval [0, 1 OJ. 
The equal-interest locally DB-optimal design for n = p = 4 design points places the 
weight w = i at each ofthe points x = 0.241, 1.104,3.036, and 7.087. In contrast, the 
locally QB-optimal design associates weight w = ! with each of the points x = 0.169, 
0.874,2.710, and 5.896, representing a substantial shift in the design points. Further, 
since the QB-optimal design results in a 4% reduction in the length of the marginal 
curvature vector and a 9% reduction in the length of the BVR vector when compared 
with the DB-optimal design, the QB-optimal design represents a moderate curvature 
reduction. 

Incidentally, the initial parameter choices 8~1 = 1.8 and 0~2 = 0.2 were chosen here 
since these were the least-squares estimates obtained for 021 and 822 when we used 
selected data points from the IP2 model with 811 = 0.7 and 812 = 0.2. 

5. Remarks 

Table 1 lists the various optimality criteria and objective functions for the design 
strategies discussed here. In situations where more than one regression function can 
be used to model a given process, our recommendation is to obtain DB-optimal 
designs whenever the curvature associated with the model functions is small and D 2B­

and QB-optimal designs whenever curvature cannot be ignored. Although a practical 

Table I 
First- and second-order estimation and discrimination criteria 

Optimality cri teria Objective function Goal 

Local DFoptimality E(~,8°) in (2.6) 1st-order estimation (E) only 
Local Do-optimality D(~. 8°) in (2.11) 1st-order discrimination (D) 

only 
Local DB-optimality B(~, (0) in (3.1) 1st-order E and D 
Bayesian DB-optimality J8(~.8)p(8)d8 Robust 1st order E and D 
Local D2u-optimality Bl(~' (0) in (4.2) 2nd-order E and D 
Bayesian DlD-optimality JB2(~.8)p(8)d8 Robust 2nd order E and D 
Local QB-optimality BQ(~' (0) in (4.7) 2nd-order E and D 
Bayesian Qu-optimality JBQ(~.8)p(8)d8 Robust 2nd order E and D 
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limitation of these second-order design procedures is that they can break down for 
moderate to large values of (1* ( (1/jk where k is the number of replicates of a given 
design used), large noise levels can be overcome by increased replication. 

Many of the examples where designs for estimation and discrimination are needed 
involve only two (or possibly three) model functions, each typically having the same 
number of parameters; see, for example, Atkinson and Cox (1974), Sparrow (1979), 
and Atkinson and Donev (1992). In these situations, each of the 'eib' terms in (3.1) is 
zero (or nearly so), and so DB-optimal designs essentially maximize IM(~,D)I, D 2B­
optimal designs essentially minimize IG(e,D)I, and QB-optimal designs essentially 
minimize v(~,D). In all the examples studied, whenever le;/bl was less than or equal to 
!, locally DB-optimal designs were practically indistinguishable from those which 
maximize IM(e,Do)l. Interestingly, the converse also seems to hold: for Example 
2 given in Section 3, let/bl = le2/bl = ~ > 1, and the difference between the locally 
DB-optimal design and the design which maximizes !AI(e,DO)1 is nontriviaL The point 
here is that in many practical situations, the estimation-discrimination design proced­
ures presented here are very simple to use: simply find the design which maximizes IMl 
(equivalently IVI in many instances, where Vis the augmented Jacobian given in (2.9) 
ignoring the n's). By way of comparison, the (sequential) estimation-discrimination 
proposed in Hill et al. (1968) is quite involved and time-consuming. 

Another application of the estimation-discrimination procedures given here is to 
situations where a researcher requires a design to both efficiently estimate the 
p parameters of a given (single) model function and to provide for a check of lack of fit 
of the model function (see O'Brien, 1994, 1995). One shortcoming of currently used 
design procedures is that these procedures typically yield designs with only p design 
points, thereby providing no opportunity to test for the adequacy of the assumed 
model. A reasonable alternative strategy is to find a similar second model function, 
and use one of the estimation-discrimination procedures given above to obtain 
a design with 'extra' design points. For example, if the IP2 model function given in 
(4.9) adequately describes the given process, then a constrained Bayesian 02B-optimal 
design (with four design points) could be obtained using the IQ2 model given in (4.10) 
as an alternative model and using the constraint that the estimation efficiency of the 
IP2 function parameters be at least, say 80%, This design would then provide the 
opportunity for at least a visual assessment of how well the IP2 model fits the actual 
data. 

Subsequent to choosing the example given in Section 4.1 to illustrate our Bayesian 
Os-optimality design procedure, we have gathered some relevant empirical evidence. 
Specifically, our concern was with the assumption of independence of the prior 
distribution used for 011 (from the SE1 model function) and 021 (from the III model 
function) in the example. Our subsequent empirical experience was based on a study 
in which several values of 011 were chosen from the interval [0.05, 0.15J, and for each 
choice of ell least-squares estimates of 021 were obtained for various designs and 
using points on the SEl function as observations. Based on this study, we feel a more 
appropriate (empirically based) prior distribution for ell and ()21 is one where 011 is 
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assumed to be uniformly distributed on the interval [0.05,0.15], and conditional on 
this value equalling 81 b 821 has a gamma distribution with parameters which depend 
on 811' Since in our study we never observed a least-squares estimate for 021 less than 
the corresponding value of 811, our empirically based prior distribution function 
assigns zero probability to the region 821 < 0ll' Also, note that for our empirically 
based prior distribution function, the skewness in the gamma distributions increases 
from 0.4 at Oll 0.05 to 1.7 at 811 = 0.15. 

Recall that the Bayesian De-optimal design for this example using the independent 
uniform prior distribution given in Section 4.1 associates the weights (J) 0.42,0.45 
and 0.13 with the points x = 2.31, 11.15 and 30. Interestingly, the Bayesian D B-

optimal design using the empirically based prior distribution function described here 
is quite similar in that it associates the weights (J) = 0.47,0.48 and 0.05 with the points 
x == 2.10, 11.33 and 30. Further, to compare the DB-efficiency of the locally D B-

optimal design (which associates the weight w 1with each of the points x 2.28 
and x = 11.99), denoted ~ h relative to the empirically based Bayesian De-optimal 
design, denoted '2, we use the expected DB-efficiency 

(5.1) 

where EFF is the DB-efficiency measure given in (4.1) and P(Oll' OZI) is the empirically 
based prior distribution function. The empirically based Bayesian DB-optimal design 
('z) is preferred to the locally DB-optimal design (ed here since, first, the expected 
De-efficiency if 98.8% (so, on average, 'z is more efficient than, d, and, second, 
although EFF is as high as 110% for one choice of (0 1 h ( 21 ), it is as low as 5% for 
another choice. This again highlights the lack ofrobustness of this locally DB-optimal 
design to departures from the hypothesized values of 011 and eZI in certain directions. 

We conclude by noting the following connection between the model discrimination 

measure given in (2.11) for the collection C = {'11 (x,!!d, '1z(x,!!z)} and the divergence 
(Kullback, 1959) between the hypotheses 

HI: y ~ N('11(X,!!d, a; In), 

(5.2) 

When we choose ttl = pdp in (2.11), exact DD-optimal designs maximize 

(5.3) 

where the vector alienation coefficient (Hotelling, 1936) is given by 

(5.4) 

for P(A) = A(A'A)- I A'. The vector alienation coefficient, which lies between zero and 
one, is a measure of the collinearity between C(VI), the column space of y;., and C(J-;), 
the column space of Vz. When L1 = 0, C(Y;.) and C(Vz) are perfectly collinear, and when 

http:0.47,0.48
http:0.42,0.45
http:0.05,0.15
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A = 1, these column spaces are perfectly orthogonal; see Mardia et al. (1979) and Fox 
and Monette (1992). Further, since the 'distance' or divergence between the hypothe­
ses H1 and H2 in (5.2) is proportional to 

(5.5) 

we note that designs which simultaneously make VI Vi and V2 ~ 'large' and make 
C(Vi) and C(V2) reasonably orthogonal result in larger values of both the divergence 
measure given in (5.5) and the discrimination measure given in (2.11). 
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