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Abstract

This paper presents and illustrates a new nonsequential design procedure for simultaneous
parameter estimation and model discrimination for a collection of nonlinear regression models.
This design criterion is extended to make it robust to initial parameter choices by using
a Bayesian design approach, and is alsc extended to yield efficient estimation—discrimination
designs which take account of curvature.

AMS classification: Primary 62K 05; Secondary 53-00
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1. Introduction

For a given process, several regression model functions can often be given which do
a reasonable job of modelling the underlying mechanism. For example, the Gompertz,
Logistic, Richards, Morgan-Mercer-Flodin, and Weibull sigmoidal growth curves
discussed in Ratkowsky (1983} and Seber and Wild (1989) all provide good fits to the
agricultural data sets given in Ch. 4 of Ratkowsky (1983). Another example is
discussed in Box and Hill (1567), in which at least ten rival model functions are used to
adequately describe the water gas shift reaction:

CO -+ HzO*COz + Hz.
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Design methodology for a collection of nonlinear regression models has generally
focused on either efficiently estimating all of the model parameters of the collection
(i.e., parameter estimation) or highlighting which of the model functions is more
appropriate for describing the underlying process (i.e., model discrimination). For
example, several of the design procedures given in Lauter (1974a, 1976) and Steinberg
and Hunter (1984} focus solely on efficient parameter estimation, whereas the proced-
ures given in Box and Hill (1967), Hill {1978), Atkinson (1988} and Pukelsheim and
Rosenberger (1993) focus solely on model discrimination.

As estimation-only design procedures tend to do a rather poor job of model
discrimination, and vice versa, a combined estimation-discrimination strategy is
clearly needed. Sequential design procedures for simultaneous parameter estimation .
and model discrimination, such as those developed in Hill et al. (1968) and Borth
(1975), are often impractical. Lauter (1974a) gives a non-sequential design procedure
for estimation and discrimination for two linear models. This paper provides a non-
sequential design procedure for simultaneous estimation and discrimination for
a collection of nonlinear regression models. This new criterion, which depends on an
initial choice of the model parameter vectors, 1s extended to make it robust to this
initial parameter choice using the Bayesian design approach of Liuter (1974b) and
Chaloner and Larntz {1989). Extensions to take account of the curvature associated
with the model functions are also given.

In Section 2, design theory and estimation-only, and discrimination-only design
procedures are reviewed. We introduce and illustrate our estimation—discrimination
procedure in Section 3, and provide Bayesian and second-order extensions in Section 4.

2. Background
2.1. Design theory

The design problem for the single nonlinear model
V=000 e i=1,.,m, 2.1

typically involves choosing a design with » design points, &, to estimate some function
of the p-dimensional parameter vector, §, with high efficiency. Here £ can be written as

- {xl,xz,...,x, } 2.2)

Wy, W, ..., W

where the design points xy, x4, ..., x, are elements of the design space X and are not
necessarily distinet, and associated weights w,, w,, ..., w, are nonnegative real num-
bers which sum to one.

In contrast to the expression given in (2.2}, £ can be thought of in terms of its
r(r < n) distinct design points, sy, 55, ...,5,, called its support points, and their asso-
ciated design weights 4, 4,,...,4,. Whenever nl; is integral for each i, £ is said to be an



T.E. O'Brien, J.O. Rawlings [ Journal of Statistical Planning and Inference 55 (1996) 77-93 79

exact design; otherwise, it i said to be a discrete design (see Rasch, 1990). We use
& here to denote a discrete design with n design points and £° to denote an exact
n-point design. Whether a design is discrete or exact, n4; can be thought of as the
‘number of observations’ taken at the experimental level s;. Throughout this paper
optimal designs will be sought in the class of all discrete designs.

When the residuals in (2.1) are uncorrelated normal random variables with zero
mean and constant variance o7, the (Fisher) information per observation is given by

n A - T
MED =Y o (0”62“)) (%(g—)) = VIOV 2.3)
i=1 p4 X

Here V is the n x p Jacobian of n with the ith row equal to (dn(x;)/08)", and Q = diag
{wy,...,m,}. Also, the variance function (White, 1973) of # is given by

oy T
dix, £, 0) = (0"("‘)) M1(,0) (@("—)) (24)

a0 20

where dn{x)/00 is of dimension p x 1, and a generalized inverse is used whenever M is
singular.

For the (single) nonlinear model given in (2.1), optimal designs typically minimize
some convex function of M~ ', For example, designs which minimize the determinant
M~ (&, 0°)] are called the locally D-optimal, and those which minimize the maximum
(over x € X) of d(x, ¢, §°) are called locally G-optimal. The term ‘locally’ is used here to
emphasize the fact that the design is based on an initial parameter choice, §°% see
Chernoffl (1953) and Box and Lucas (1959) for a discussion of local optimality.
Further, the General Equivalence Theorem (Kiefer and Wolfowitz, 1960; White, 1973)
establishes that D-optimal designs are equivalently G-optimal over the class of
discrete designs. One advantage to using D-optimal designs in regressions settings is
that these designs are invariant to a (even nonlinear) reparameterization of the model
function. Other optimality criteria are discussed in Pazman (1986), Atkinson and
Donev (1992), and Pukelsheim (1993).

Optimal designs can be obtained with computer programs which minimize the
particular objective function by using a numerical search procedure such as the
OPTMUM algorithm provided in the GAUSS! programming language. The GAUSS
computer programs used to obtain optimal designs given here (available from the first
author) require starting values for the design points and weights, and use a numerical
search procedure which alternates between four numerical algorithms to obtain the
corresponding optimal design.

2.2. Parameter estimation for a collection of nonlinear models

Often several model functions exist to describe a given process. Suppose that the
m model functions 7,(x, 8,), ..., nm(x, §,,) are available, where §;, the parameter vector

'GAUSS is a trademark of Aptech Systems, Inc., Kent, WA,
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of the ith model, is of dimension p; x 1. Qur focus here is on efficient estimation of the
p=p, + - + pm parameters in the collection C = {,, ..., fu}.

Corresponding to the ith model function in C is the p; x p; information matrix,
M(£,0) = VIQV., where the Jacobian matrix ¥V, is of dimension nx p;. Here the
number of support points of £ must be greater than or equal to the maximum of the
pes so that each §; is estimable. Further, the estimation efficiency (Atkinson and
Donev, 1992, p. 116} associated with the ith model function is given by

) ]M(ﬁ,,@?)' 1/p:
EE.00) = {134'(5*—9")!} ’

(2.5)
where £F is the locally D-optimal design for the ith model function. The estimation
efficiency is a relative measure of the information contained in £ regarding the model
parameters @, it compares the estimation information of the arbitrary design £ with
the estimation information of the D-optimal design, and the exponent in (2.5) reflects
the number of parameters being considered.

When the nonnegative model weights n,, ..., m,, (Which sum to unity) are chosen to
reflect prior probabilities associated with the model functions n,, ..., 7, designs may
be obtained to maximize ¥ n;log E;. Designs which maximize this weighted sum of the
log estimation efficiencies, called locally Dg-optimal designs here, equivalent maxi-
mize the estimation measure

E(8% = ), —logIMi(&, 00, 2.6
i=1Fi
where §° = (697, ...,65")7 is an initial choice of § = (41,...,0:)". Eq. (2.6) is a slight
generalization of the estimation measure used in Atkinson and Donev (1992, p. 253),
where focus is on parameter estimation in polynomial medels. In the following
example, we obtain a locally Dg-optimal design for two nonlinear models.

Example 1. Two rival growth model functions are the one-parameter simple ex-
ponential model (SEl) and the one-parameter inverse linear model (IL1) given
respectively by

1

n1(x,0;,) =1 —e %% and n2(x,05,) = 1 — m

2.7

For the initial parameter choices 07; = 0.1 and 63; = 0.2, and design space X = [0,
30], the equal-interest (i.e., n, = 7, = 3) locally Dg-optimal design (over all discrete
designs} takes all observations at x = 7.81. By way of comparison, the locally D-
optimal design for the first model function puts all weight at x = 10.0 and the locally
D-optimal design for the second model function puts all weight at x = 5.0; the
estimation efficiencies (see Eq. (2.5) above) of the Dg-optimal design relative to these
designs are E; = 94% and E, =91%.
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Incidentally, the initial parameter value 69, = 0.2 was chosen here since this is the
least-squares estimate obtained for #,, when we used selected data points from the
SE1 model with 8,;, = (0.1.

We note that the estimation measure given in (2.6) is preferred to the S-optimality
estimation measure given in Liuter (1974a, 1976} since the measure given in {2.6) is
invariant to a (linear or nonlinear) reparameterization of the model function, whereas
the measure of Liuter is not.

2.3. Model discrimination for a collection of nonlinear models

Suppose now that our goal is to obtain a design that highlights which of the model
functions in the collection C is best in describing the given process under study. The
‘Bayesian’ augmented model function for the collection C is of the form

"I(X,ﬁ) = nlrx’i{x».@l) + -+ nm’?m(xvgm)’ (28)

where the positive weights n,, ..., n,, (which sum to one) are again chosen to reflect
prior probabilities associated with the model function of C. The n x p Jacobian for this
augmented model is

V= % =[m Vi Vel i Val, (29)

which is of dimension »n x p where n 2 p. Also, the information matrix associated with
the augmented model is (2.8) is M(£,8) = VT QV. In what follows, we assume that the
columus of ¥ are linearly independent. Inherent in this assumption is the requirement
that no more than one of the m models in € be a linear model or have a linear
component; see Pukelsheim and Rosenberger (1993) for the case where the models of
interest are each linear models and Atkinson and Donev (1992) for the case where at
least two of the models have linear components.

The discrimination efficiency (Atkinson and Cox, 1974, p. 323) associated with the
ith model function of C is given by

IM(E, 6°)/1M(,6))] }”“
IM(EEON/IMAEE NS

)

Di{£,8°% = { (2.10)
where s; = p — p;and £F maximizes [M(&, 8°)|/|M(£, 87). The discrimination efficiency
is a relative measure of the information in ¢ for detecting departures from the ith
model function in the direction of the other model functions; it compares the
discrimination information of the arbitrary design £ with the discrimination informa-
tion of &F, and the exponent reflects the number of parameters in the collection
€ which are not in the ith mode! function.

When the nonnegative model weights n,, ..., n,, (which sum to unity) are again
chosen to reflect prior probabilities associated with the model functions #y,... ,%m,
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desigﬁs may be obtained to maximize ¥ n;logD;. Designs which maximize this
weighted sum of the log discrimination efficiencies, called locally Dy-optimal designs
here, equivalently maximize the discrimination measure

IM (&8
8 (e, 69T

again where §° = (QOT ..,8%N)T is an initial choice of § = (6], ...,4n)". Locally Dp-
optimal designs highlight the adequacy of the m model functions in the collection C.
Note that the discrimination measure given in {2.11) represents a slight generalization
of the equal-interest discrimination measure presented in Atkinson and Cox (1974),
where each of the model weights is chosen to equal 1/m. The following example
illustrates equal-interest model discrimination.

D(,6°) = z & @11)

Example 1 (continued). For the SEl and IL1 model functions and the initial para-
meter choices given in Section 2.2, the equal-interest locally Dp-optimal design {over
all discrete designs) for n = p = 2 design points associates the weight w, = 0.60 with
the point x; = 1.73, and the weight w, = 0.40 with the point x, = 13.19. Further, the
discrimination efficiencies (Eq. (2.10)) associated with this design are D, = D, = 96%.

Not surprisingly, the estimation efficiencies associated with the design given in the
previous example are only E, = 46% and E, = 60%, illustrating that designs which
do a good job of discrimination can do a rather poor job of parameter estimation (and
vice versa). What is therefore needed is a design criterion which combines the dual
goals of efficient parameter estimation and model discrimination.

3. Simultaneous estimation and discrimination for a collection of nonlinear models

Instead of treating parameter estimation and model discrimination for the collec-
tion of model functions C as separate problems, we now present a design procedure
which provides for some control of the efficiency of both parameter estimation and
model discrimination. The estimation and discrimination measures given in (2.6) and
{2.11) can be combined into the single measure

B(&,6) = xE(,8) + (1 — ) D(¢,6)

= blog|M(Z,0) + Y, c;log|Mi(£,8)), (3.1)
i=1
wherea € [0, 1], b = [1 — )5 (m/sy), and ¢; = amy/p; — {1 — o)ny/s;. Here o controls the
degree of emphasis placed on estimation relative to discrimination. Note that the
estimation—discrimination measure in (3.1) includes the alternate measure

B9 = E(i 9 I D(s, 9 (3.2)
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as a special case by choosing

7 *

dzm fOl‘R=—g—* and A—.E[O, ]]; (33)
here E* and D* are the maximum values of E(£,8) and D(£,0), respectively.
An obvious advantage of B(£, ) in (3.1) over B'(£, §) in (3.2) is that B(£, 0) is easier to
use since it does not require knowing E* and D*. Designs which maximize B(¢£,8°) in
(3.1}, called locally Dg-optimal designs here, are equivalently B-optimal (see Liuter,
1974a), and provide for simultaneous efficient parameter estimation and model
discrimination.

Example 1 (continued). For the SE1 and IL1 model functions and the initial para-
meter choices in Section 2.2, the locally Dy-optimal design (over all discrete designs)
with the weights ¢ = n; = n, = 4 (hereafter called the ‘equal-interest’ Dg-optimal
design) for n = 2 design points places the weight w = 4 at each of the points x, = 2.28
and x; = 11.99. The estimation and discrimination efficiencies associated with this
design are E; = 64%, E, = 72%, D, = 93% and D, = 83%. To the extent that these
discrimination efficiencies exceed the estimation efficiencies, this design tends to favor
discrimination over estimation.

An alternative strategy is to maximize B(¢, §°) in (3.1) subject to the constraint that
E, and E, exceed some constant, ¢. For example, for ¢ = 70%, the constrained
Dyg-optimal design for n = 2 observations associates the weight », = 040 with the
point x; = 2.51 and the weight w, = 0.60 with the point x, = 11.49. For this latter
design, the estimation and discrimination efficiencies are E; = 70%, E; = 75%,
D, = 85% and D, = 68%. Of course, another way to obtain a design with higher
estimation efficiencies would be 1o choose « in (3.1) to exceed 3, although the exact
relationship between o and the estimation and discrimination efficiencies is not readiiy
apparent.

In all examples studied, ‘equal-interest’ Dg-optimal designs had higher discrimina-
tion efficiencies than estimation efficiencies. This phenomenon is analogous to the
experience associated with the sequential estimation—discrimination design criterion
presented in Hill et al. (1968), in which initial runs tend to focus on model discrimina-
tion and subsequent runs tend to focus on parameter estimation once the model has
been identified.

The variance function (Liuter, 1974a) which corresponds to the weighted sum of
information matrices in (3.1) is given by

m

dB(X7 67,@) = bd(x, éag) + Z Cidi(x: é’gi)) (34)

i=1

where d(x,£,0), d;(x,£,8,),....d.(x, & 8,) are the variance functions associated with
1 in (2.8), ny, ..., 7., respectively, and are of the form given in (2.4). Further, the
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following extension to the General Equivalence Theorem and subsequent corollary
are useful in obtaining Dy-optimal designs.

Theorem 3.1. Dg-optimal designs {over the class of all discrete designs) can be equiva-
lently characterized by the following conditions:

1. &* maximizes B{{,8);

2. &* minimizes the maximum (over X) of dg(x, £,6);

3. the maximum of dg(x, £*,8) over X is equal to one.

Corollary 3.1. The variance function dg(x,*, ) attains its maximum value at the
support points of £*.

The proof of this theorem is similar to those of other extensions to the General
Equivalence Theorem given in Whittle (1973) and Liuter (1974a), and is omitted here.
Further, Corollary 3.1 can be used to show that a given design is indeed Dy-optimal,
as is illustrated in the following example.

Example 2. Suppose that two rival model functions for a given growth process are the
SE1 model in (2.7) with initial choice 69, =0.1 and the quadratic model,
12 = Bo + Byx + B2x?, over the range X = [0,30]. The equal-interest Dg-optimal
design (over all discrete designs) for n = p = 4 design points associates the weights
o =020, 0.34, 0.27, and 0.19 with the points x = 0, 6.50, 19.61, and 30, respectively.
The corresponding variance function, graphed in Fig. 1, verifies that this design is
indeed Dg-optimal since this function reaches its maximum value (of y = 1} at the
support points of the design. Incidentally, designs of this form can be converted into
practical designs by using the algorithm presented in O’Brien and Rawlings (1993).

4. Extensions

Two important criticisms of design procedures based on information matrices of
the form given in (2.3) are that these procedures are often valid only when the true
vector of parameters is in a neighborhood of the initial choice (cf,, Pilz, 1991), and that
these procedures take no account of the curvature of the corresponding expectation
surface. In this section, we demonstrate how the estimation—discrimination design
procedure presented in the previous section can be extended to temper the impact of
these potential problems.

4.1. A Bayesian estimation—discrimination procedure
For a single nonlinear model function, Bayesian D-optimal designs have been

introduced in Lauter (1974b) and Chaloner and Larntz (1989) so as to relax the
sensitivity of locally D-optimal designs to the initial parameter choice. Bayesian
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Fig. 1. Variance function for Example 2.

D-optimal designs maximize the expected log information, [log|M(Z, 8)|p(8) d8 where
p(0) is some prior distribution function hypothesized for §. Arumugham (1992) shows
that for the Weibull model function Bayesian D-optimal designs are preferred to
locally D-optimal designs when some uncertainty exists regarding the true value of 8.
Further, Chaloner and Larntz (1989) report that as the dispersion of p(f) increases, so
too does the number of support points of the corresponding Bayesian D-optimal
design.

In a similar manner, we define Bayesian Dg-optimal designs as those which
maximize j'B(é, B p(8)de for B(£,H) given in (3.1) and for a given prior distribution
function. An extension of the General Equivalence Theorem to Bayesian Dy-optimal
designs is straightforward, and is omitted here; and an analogue of Corollary 3.1 may
be used to show that a given design is indeed Bayesian Dg-optimal. The following
example highlights the difference between Bayesian and non-Bayesian Dg-optimality
designs.

Example 1 (continued). For the SE1 and IL1 model functions given in (2.7), suppose
that 8,, and 8, are independently and uniformly distributed on the intervals [0.07,
0.13] and [0.15, 0.25], respectively. For this prior distribution, the equal-interest
Bayesian Dg-optimal design (over all discrete designs) for at least 2 design points put
the weight w = 3 at each of the points x; = 2.22 and x, = 11.65. This design repres-
ents a slight shift from the (non-Bayesian) locally Dg-optimal design, denoted &,
which associates the weight w = § with each of the points x; = 2.28 and x, = 11.99.
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In contrast, if 8,, and 8,, are independently and uniformly distributed on the
intervals [0.05, 0.15] and [0.10, 0.30], the Bayesian Dy-optimal design for at least
3 design points, denoted &,, associates the weights w = 0.42, 0.45, and 0.13 with the
points x = 2.31, 11.15, and 30, respectively. This increase in the number of support
points for Bayesian Dg-optimal designs with an increase in uncertainty about @ is
analogous to the experience of Chaloner and Larntz (1989) where Bayesian D-optimal
designs are obtained for a single nonlinear model.

To compare the robustness regarding § of this Bayesian Dy-optimal design {(£,) with
that of the locally Dy-optimal design (£,), we may use the Dy-efficiency

[IMEL8T"
EFF = [m] (4.1)

evaluated at the extremes of the region
{(0;1,0,,): 0.05< 8;; <0.15and 0.10 < 6,, < 0.30},

where M corresponds to the Jacobian given in (2.9). Since the Dy-efficiencies at the
points (8,,,8,,) = (0.05,0.10), (0.05,0.30}, (0.15,0.10) and (0.15,0.30) are EFF = 0.90,
0.99, 0.49 and 1.01, respectively, we conclude that the Bayesian Dg-optimal design
may be preferred to the locally Dy-optimal design since the efficiency of the latter
design can be very poor as § moves away from 8° in certain directions (e.g., towards
6., =013, 63, = 0.10).

4.2. Quadratic estimation—discrimination design criteria

For a single nonlinear model function, quadratic design criteria take account of the
curvature of the corresponding expectation surface; see Bates and Watts (1980, 1988)
and Seber and Wild {1989} for a discussion of curvature and O’Brien (1993) for
a discussion of quadratic design criteria. Two such criteria are the D,-optimality
design criterion presented in O’Brien and Rawlings (1993) and the Q-optimality
design criterion given in Hamilton and Watts (19853). In this section, the estima-
tion—discrimination criterion given in Section 3 is extended to yield designs which
take account of curvature.

4.2.1. Dyg-optimality for a collection of nonlinear models

For a nonlinear model of the form (2.1), designs which minimize the second-order
generalized mean squared error (GMSE) of the least-squares estimate of §, called
D,-optimal designs, are introduced and illustrated in O’Brien and Rawlings (1993)
and highlighted in Clarke and Haines (1995). D,-optimal designs minimize the
determinant of the second-order MSE :

G=G(0) =5 +bb, (4.2)
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where'S is the corresponding second-order variance estimate of Clarke (1980) and b is
the second-order bias estimate of Box (1971). Since G is a function of §, either locally
D,-optimal designs or Bayesian D,-optimal designs are obtained.

One extension of the estimation—discrimination design criterion presented in Sec-
tion 3 to take account of curvature is to use D,-optimality in place of D-optimality in
Eq. (3.1). Thus, instead of obtaining designs to maximize B(¢, §) given in (3.1), designs
can be chosen to minimize the second-order estimation-discrimination measure

B,(&,0) = blog|G(,0) + Y. cilog|Gi(¢, ). (4.3)

i=1

Here G is given in (4.2), and G; = S; + b;b; where S; and b; are the second-order
variance and bias estimates associated with the ith model function.

Whereas estimation—discrimination designs based on D-optimality are called
Dg-optimal designs, those based on D,-optimality are called D,g-optimal here; and
since D,g-optimal designs are functions of § and o, either locally D,g-optimal designs
or Bayesian D,g-optimal designs are obtained. The following example illustrates the
difference between locally Dg-optimal and locally D,p-optimal designs.

Example 1 (continued). For the SE1 and IL1 model functions and initial parameter
choices given in Section 2.2, the equal-interest locally Dg-optimal design associates
the weight @ = 4 with each of the points x; = 2.28 and x, = 11.99. In contrast, the
equal-interest locally D,g-optimal design using ¢° = 0.3 places the weight w, = 0.69
at the point x; = 1.72, and the weight w, = 0.31 at the point x, = 10.87, representing
a nontrivial shift from the locally Dg-optimal design.

Various curvature measures have been introduced to assess the degree of nonlin-
earity (or curvature) of the corresponding expectation surface. Two important
measures of the curvature associated with a particular design are the marginal
curvature measure of Clarke (1987) and the ‘measure of the importance of the biases’
of Box (1971, p. 179). Analogous to the bias measure of Box (1971) is our bias—variance
ratio (BVR), given by

Gl -S| 1

BVR = =
plS] p

bS™'b. (4.4)

Our BVR measure is preferred to the bias measure of Box (1971), since, whereas Box’s
measure compares a second-order bias estimate with a first-order variance estimate,
ours compares a second-order bias estimate with a second-order variance estimate.
For this example, the length of the p x 1 marginal curvature vector associated with
the D, z-optimal design is 7% less than that of the Dg-optimal design, and the length
of the m x 1 BVR vector associated with the D,g-optimal design is 2% less than that of
the Dg-optimal design. It follows that the D,g-optimal design results in a slight to
moderate reduction in curvature when compared with the Dg-optimal design.
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A second quadratic design procedure is presented in Hamilton and Watts (1985),
and in the following section this procedure is adapted to achieve parameter estimation
and model discrimination for the model functions in the collection €.

4.2.2. Qgoptimality for a collection of nonlinear models
The n x p Jacobian associated with the Bayesian augmented model function given
in (2.8) is

Vol ViV i bi] “s)

and the corresponding n x p x p array of second derivatives is
W =diag {m; W, W3, ..., W}, (4.6)
where each W; = 0%1,/00} is of dimension n x p; X p;.

Further, for the single model (2.1), the second-order approximation to the volume of
the 100(1 — «)% confidence region for § developed in Hamilton and Watts (1985) can
be written as

V(&8 =dIV VI D"V (1 + K2 tr(D7IN)), (4.7)

where d and k are constants, and D and N are functions of W, detailed expressions for
these terms are given in Hamilton and Watts (1985). Designs which minimize v(¢, §) in
(4.7), called Q-optimal designs, are discussed in O'Brien {1992). As Q-optimal designs
are functions of § and o, either locally Q-optimal designs or Bayesian Q-optimal
designs are obtained.

A second extension to the estimation—discrimination design criterion presented in
Section 3 to take account of curvature is to use Q-optimality in place of D-optimality
in Eq. (3.1). Thus, instead of obtaining designs to maximize B(&,§) given in (3.1),
designs can be chosen to minimize the second-order estimation-discrimination
measure

Bal6,0) = blogv(&.0) + 3. cilogw(&.6), “8)

i=1

where v is the volume given in (4.7) corresponding to the augmented mode! function
(2.8) and v; is the volume corresponding to the ith model function of the collection C.
Designs which minimize Bq(¢,8°) in (4.8), called locally Qg-optimal here, use the
initial parameter choices §° and ¢°. The following example highlights the difference
between locally Dg-optimal and locally Qg-optimal designs for model functions which
possess a moderate amount of curvature,
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Example 3. A rival to the two-parameter intermediate product (IP2) model function

811

W(e"’”‘ —e M%) (for x > 0; 0,4, 6,, > 0) 4.9)
11— Y1z

Ny =

is the two-parameter inverse quadratic (IQ2) model function

_ OZIX
{14 6,,x)(1 + 0,,%)

Ha (for x 2 0; 8,4, 6,5, > 0). (4.10)
Suppose that reasonable initial parameter choices are (69,, 85, 63,, 8%,) = (0.7, 0.2,
1.8,0.2) and ¢° = 0.1, and that the corresponding design space is the interval [0, 10].
The equal-interest locally Dy-optimal design for n = p = 4 design points places the
weight w = 1 at each of the points x = 0.241, 1.104, 3.036, and 7.087. In contrast, the
locally Qg-optimal design associates weight w = ; with each of the points x = 0.169,
0.874, 2.710, and 5.896, representing a substantial shift in the design points. Further,
since the Qg-optimal design results in a 4% reduction in the length of the marginal
curvature vector and a 9% reduction in the length of the BVR vector when compared
with the Dg-optimal design, the Qg-optimal design represents a moderate curvature
reduction.

Incidentally, the initial parameter choices 83, = 1.8 and 89, = 0.2 were chosen here
since these were the least-squares estimates obtained for 6,, and 8,, when we used
selected data points from the IP2 model with 6;, = 0.7 and 8, = 0.2.

5. Remarks

Table 1 lists the various optimality criteria and objective functions for the design
strategies discussed here. In situations where more than one regression function can
be used to model a given process, our recommendation is to obtain Dg-optimal
designs whenever the curvature associated with the model functions is small and D,p-
and Qg-optimal designs whenever curvature cannot be ignored. Although a practical

Table 1

First- and second-order estimation and discrimination criteria

Optimality criteria Objective function Goal

Local Dg-optimality E(£,68% in (2.6) 1st-order estimation (E) only

Local Dy-optimality D(£,6% in (2.11) 1st-order discrimination (D}
only

Local Dg-optimality B(£,6% in (3.1) ist-order E and D

Bayesian Dg-optimality  {B(Z,8)p(8)ds Robust Ist order E and D

Local D,g-optimality By(£,8% in (4.2) 2nd-order E and D
Bayesian Djg-optimality  [B,{Z,6) p(6)dé Robust 2nd order E and D
Local Qg-optimality Bo{£, 6% in (4.7) 2nd-order E and D
Bayesian Qg-optimality  [Bo{Z,8) p(6)d# Robust 2nd order E and D s
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limitation of these second-order design procedures is that they can break down for
moderate to large values of o* { = cr/\/!; where k is the number of replicates of a given
design used), large noise levels can be overcome by increased replication,

Many of the examples where designs for estimation and discrimination are needed
involve only two {or possibly three) model functions, each typically having the same
number of parameters; see, for example, Atkinson and Cox (1974), Sparrow (1979},
and Atkinson and Donev (1992). In these situations, each of the ‘¢;/b’ terms in (3.1} is
zero {or nearly so), and so Dg-optimal designs essentially maximize |[M(£,0), Dys-
optimal designs essentially minimize |G(&,6)], and Qg-optimal designs essentially
minimize v(£, ). In all the examples studied, whenever |¢;/b] was less than or equal to
1, locally Dg-optimal designs were practically indistinguishable from those which
maximize |M(£,8°)|. Interestingly, the converse also seems to hold: for Example
2 given in Section 3, |¢,/b| = |c,/b| = % > 3, and the difference between the locally
Dg-optimal design and the design which maximizes |M(¢, 8°)] is nontrivial. The point
here is that in many practical situations, the estimation—discrimination design proced-
ures presented here are very simple to use: simply find the design which maximizes {M|
{equivalently |¥] in many instances, where ¥'is the augmented Jacobian given in (2.9)
ignoring the n’s). By way of comparison, the {(sequential) estimation—discrimination
proposed in Hill et al. (1968) is quite involved and time-consuming.

Another application of the estimation-discrimination procedures given here is to
situations where a researcher requires a design to both efficiently estimate the
p parameters of a given (single} model function and to provide for a check of lack of fit
of the model function (see O’Brien, 1994, 1995). One shortcoming of currently used
design procedures is that these procedures typically yield designs with only p design
points, thereby providing no opportunity to test for the adequacy of the assumed
model. A reasonable alternative strategy is to find a similar second model function,
and use one of the estimation-discrimination procedures given above to obtain
a design with ‘extra’ design points. For example, if the IP2 model function given in
(4.9) adequately describes the given process, then a constrained Bayesian D,g-optimal
design (with four design points) could be obtained using the 1Q2 model given in {4.10)
as an alternative mode! and using the constraint that the estimation efficiency of the
1P2 function parameters be at least, say 80%. This design would then provide the
opportunity for at least a visual assessment of how well the [P2 model fits the actual
data.

Subsequent to choosing the example given in Section 4.1 to illustrate our Bayesian
Dg-optimality design procedure, we have gathered some relevant empirical evidence.
Specifically, our concern was with the assumption of independence of the prior
distribution used for 8y, (from the SE1 model function) and #,, {from the IL1 model
function} in the example. Our subsequent empirical experience was based on a study
in which several values of §,; were chosen from the interval [0.05, 0.15], and for each
choice of 8,, least-squares estimates of 6,; were obtained for various designs and
using points on the SE1 function as observations. Based on this study, we feel a more
appropriate (empirically based) prior distribution for #,, and 8,, is one where 8,, is



T.E. O’Brien, J.O. Rawlings [ Journal of Stafistical Planning and Inference 35 (1996) 77-93 91

assumed to be uniformly distributed on the interval [0.05, 0.15], and conditional on
this value equalling 8%,, 6,, has a gamma distribution with parameters which depend
on 8%,. Since in our study we never observed a least-squares estimate for 8, less than
the corresponding value of 8,;, our empirically based prior distribution function
assigns zero probability to the region 8,; < 6;,. Also, note that for our empirically
based prior distribution function, the skewness in the gamma distributions increases
from 0.4 at 8,, =0.05to 1.7 at 8,, = 0.15.

Recall that the Bayesian Dy-optimal design for this example using the independent
uniform prior distribution given in Section 4.1 associates the weights @ = 042, 0.45
and 0.13 with the points x = 2.31, 11.15 and 30. Interestingly, the Bayesian Dg-
optimal design using the empirically based prior distribution function described here
is quite similar in that it associates the weights w = 0.47, 0.48 and 0.05 with the points
x = 2.10, 11.33 and 30. Further, to compare the Dy-efficiency of the locally Dy-
optimal design (which associates the weight w = 7 with each of the points x = 2.28
and x = 11.99), denoted £,, relative to the empirically based Bayesian Dg-optimal
design, denoted &,, we use the expected Dy-efficiency

E(EFF) =ﬁEFFp(9“,921)d9“d931, (5.1)

where EFF is the Dy-efficiency measure given in (4.1) and p{0,,,6,,) is the empirically
based prior distribution function. The empirically based Bayesian Dy-optimal design
(£2) 1s preferred to the locally Dy-optimal design (£,) here since, first, the expected
Dg-efficiency if 98.8% (so, on average, &, is more efficient than ¢&,), and, second,
although EFF is as high as 110% for one choice of (8, , 8,;), it is as low as 5% for
another choice. This again highlights the lack of robustness of this locally Dg-optimal
design to departures from the hypothesized values of ,, and 8, in certain directions.

We conclude by noting the following connection between the model discrimination
measure given in (2.11) for the collection € = {1, (x,§,), 72(x,§,)} and the divergence
{Kuliback, 1959) between the hypotheses

Hy: y ~N(m(x8), 031,

Hy  y ~ N(n2ix,02), 621,). (5.2)
When we choose 7, = p,/p in {2.11), exact Dy-optimal designs maximize

ViVl V2 Vsl 42 (5.3)
where the vector alienation coefficient (Hotelling, 1936) is given by

_Vila = PV [Valls = P(V))V2

A ’ I 3
lVl VII IVZ VZI

{5.4)

for P(4) = A(4'A)™ ' A'. The vector alienation coefficient, which lies between zero and
one, is a measure of the collinearity between C(V,), the column space of ¥, and C(¥3),
the column space of V,. When 4 = 0, C(¥,) and C(};) are perfectly collinear, and when


http:0.47,0.48
http:0.42,0.45
http:0.05,0.15
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4 = 1, these column spaces are perfectly orthogonal; see Mardia et al. (1979) and Fox
and Monette (1992). Further, since the ‘distance’ or divergence between the hypothe-
ses Hy and H, in (5.2) is proportional to

D(1,2)= 81 Vi g + 8:Vaaf, — 261 Vi Vafs, (5.5)

we note that designs which simultaneously make VW, and ¥V, ¥; ‘large’ and make
C(1) and C(¥5) reasonably orthogonal result in larger values of both the divergence
measure given in (5.5) and the discrimination measure given in (2.11).
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