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Abstract 
 

Researchers often find that nonlinear regression 
models are more relevant for their studies than 
are linear ones, and are thus often in a position of 
requiring efficient designs for a given nonlinear 
model.  A common shortcoming of most optimal 
designs for nonlinear models used in practical 
settings, however, is that these designs typically 
focus only on first-order parameter variance or 
predicted variance, and thus ignore the inherent 
nonlinear of the assumed model function.  
Another shortcoming is that optimal designs 
often have only p (the number of model 
parameters) support points, thereby providing no 
ability to test for model misspecification.  
Measures of marginal curvature, first introduced 
in Clarke (1987) and further explored in Haines 
et al (2004), provide a useful means of assessing 
model nonlinearity. This paper discusses the 
reliability of Clarke’s marginal curvature 
measures (viz-a-viz other curvature and 
nonlinearity measures) in practical settings, and 
introduces a design criterion that combines 
variance minimization with nonlinearity 
minimization. 
 
Key Words: Generalized Nonlinear Models; 
Geometric Designs; Lack of Fit; Marginal 
Curvature; Model Robustness; Nonlinearity. 
 
1. Introduction 
 
Researchers often find that nonlinear regression 
models are more applicable for modelling 
various biological, physical and chemical 
processes than are linear ones since they tend to 
fit the data well and since these models (and 
model parameters) are more scientifically 
meaningful.  These researchers are thus often in 
a position of requiring optimal or near-optimal 
designs for a given nonlinear model.  A common 
shortcoming of most optimal designs for 
nonlinear models used in practical settings, 
however, is that these designs typically focus 
only on first-order parameter variance or 
predicted variance, and thus ignore the inherent 
nonlinear of the assumed model function.  
Another shortcoming of optimal designs is that 

they often have only p support points, where p is 
the number of model parameters.  In this paper, 
we set forth and illustrate two new robust design 
procedures for nonlinear models – the first 
underscoring the use of geometric designs, and 
the second focusing on efficient parameter 
estimation as well as reduced curvature.  We also 
provide recommendations as to a means to 
choosing one of these procedures over the other.  
These two design procedures are given and 
discussed in Sections 5 (geometric method) and 
6 (reduced curvature); we first provide some 
background in optimal design, curvature, and 
illustrations in Sections 2, 3 and 4, respectively. 
 
2. Background in Design 
 
For a given process and/or set of data, 
researchers typically have in mind a statistical 
model.  This model includes (1) an assumed 
distribution for the response variable, (2) a link 
function connecting the expected response with 
the independent variable(s), (3) a (mean) model 
function η(x,θ), and (4) a variance function 
(perhaps depending on θ and/or additional 
parameters).  The goal of the study is often to 
choose a design to efficiently estimate the p 
parameters in θ - although sometimes designs are 
chosen to best discriminate between model 
functions in a class, or both. 
 
An n-point design, which is a probability 
measure, is denoted ξ here and written 
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Here the ωk are non-negative weights that sum to 
one, and the xk (may be vectors) belong to the 
design space and are not necessarily distinct. 
 
For the model function η(x,θ), the Jacobian 
matrix is V = ∂η/∂θ? (of dimension nxp) and the 
pxp Fisher information matrix is 
        

           M(ξ,θ) = VTΩV 
 

where Ω  = diag{ω1, ω2, …, ωn}.  The first-order  



(and asymptotic) variance of the least-squares 
estimator of θ is proportional to M-1, so designs 
are often chosen to minimize some convex 
function of M-1.  For example, designs which 
minimize it’s determinant are called D-optimal, 
and those that minimize it’s trace are called A-
optimal.  Since for nonlinear models, V depends 
upon θ, a Bayesian strategy is sometimes used. 
 
The (first-order) variance of the predicted 
response at X = x is given by 
 

d(x,ξ,θ) = [∂η(x)/∂θ]TM-1[∂η(x)/∂θ] 
 
and designs that minimize (over ξ) the maximum 
(over x) of d(x,ξ,θ) are called G-optimal. 
 
The General Equivalence Theorem (GET) of 
Kiefer and Wolfowitz (1960) proves that D- and 
G-optimal designs are equivalent, and that the 
variance function evaluated using the D-/G-
optimal design does not exceed the line (or 
hyper-plane) y = p (i.e., the number of model 
parameters) – but that it will exceed this line for 
all other designs.  A corollary establishes that the 
maximum of the variance function (p) is 
achieved for the D-/G-optimal design at the 
support points of this design.  The GET was 
extended to homoskedastic nonlinear models in 
White (1973), and to heteroskedastic nonlinear 
models in Downing et al (2001). 
 
A-optimality is generally used in “block design” 
situations (including cyclic-, row-, column- and 
alpha-designs) since it focuses on minimizing the 
average variance of the parameters (or contrasts 
of parameters).  Thus, Kerr and Churchill (2001) 
recommend this criterion for gene expression 
microarray data. In contrast, D- (or G-) 
optimality is recommended for regression 
models since this criterion (but not A- or E-
optimality) is invariant to a linear or nonlinear 
change in scale; see Silvey (1980). Uniqueness 
and cardinality associated with optimal design 
(though somewhat convoluted) are discussed in 
Gaffke (1987), Vila (1991), and references 
provided therein. 
  
In most practical situations, optimal designs for p 
parameters have only p support points, thereby 
providing no ability to test for lack of fit of the 
assumed model.  We therefore desire near-
optimal “robust” designs which have extra 
support points. 
 

3. Background in Confidence Intervals and 
Curvature 

 
Popular confidence regions for nonlinear models 
include the Wald and likelihood-based regions. 
These are connected in that Wald confidence 
regions (WCR) use the following linear 
approximation.  The corresponding (1-α)*100% 
WCR is given by 
 
     {θ∊Θ: (θ - θ∗ )TV∗

TV∗  (θ - θ∗ )  ps2Fα } 
 
whereas the (1-α)*100% likelihood-based region 
(LBCR) is given by 
 

{θ∊Θ: S(θ) - S(θ∗ )  ps2Fα } 
 

Here S(θ) = εTε =∥y - η(θ)∥2 is the sum of 
squares function. So, if we have  
 

  η(θ) ≈ η(θ∗ ) + V∗ (θ - θ∗ ),  
 

then ε = ε∗  - V∗ (θ - θ∗ ), and S(θ)-S(θ∗ ) ≈  
(θ - θ∗ )TV∗

TV∗  (θ - θ∗ ).  Thus, the extent to which 
η(θ) ≉ η(θ∗ ) + V∗ (θ - θ∗ ) is captured in 
curvature/nonlinearity, and is discussed below; 
first, we provide an important illustration. 
 
Example 1.  The two-parameter log-logistic 
(LL2) model function, given by 
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is fitted to (and plotted with) the dataset 
portrayed in the following Figure. 
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LL2 fit to 6-point uniform design data

Note that for this model function, θ2 is the LD50 
or ED50 parameter (the value of the independent 
variable such that the expected response is ½) 
and that θ3 is the slope parameter.; for the given 
dataset, the parameter estimates are 3.74 and 
1.22 respectively.  The 99% (outer region), 95% 
and 90% (inner region) likelihood-based 
confidence regions (LBCRs) for these two model 



parameters and this dataset are given in the 
following Figure.  (The central point in the plot 
corresponds to the least-squares estimate of the 
model parameters.) 
 

 
 
On the other hand, the corresponding Wald 
confidence regions (WCRs) are graphed below; 
note the substantial departure of the Wald 
approximate regions from the more-reliable 
likelihood-based regions. 
 

 
 
Since our focus is usually on single parameters, 
confidence intervals are obtained by “profiling 
out” the nuisance parameters (see Seber and 
Wild, 1989, or Pawitan, 2001).  Graphed below 
is the profile likelihood curve for θ2, as are cut-
lines corresponding to 99% (top line), 95%, and 
90% (bottom line). 
 

 
 

Profile likelihood confidence intervals (PLCIs) 
are then obtained from the intersection of the 
profile curve and the corresponding cut-line.  In 
contrast, the Wald methodology replaces the 
actual profile likelihood curve with a parabola, 
thereby always yielding symmetric Wald 
confidence intervals (WCIs).  In the graph above, 
note the degree to which the profile curve 
departs from a parabola.  In contrast, the profile 
curve for parameter θ3, graphed below, is closer 
to looking like a parabola. 
 

 
 
Since the latter profile likelihood curve is closer 
to a parabola, one would expect that the degree 
of curvature or nonlinearity associated with θ2 
should be higher than that associated with θ3.  
Indeed this is the case here, as demonstrated by 
the following Wald and profile likelihood 95% 
confidence intervals for the two model 
parameters; one can claim a low degree of 
nonlinearity if the WCI and PLCI are nearly 
coincidental.  
 

 WCI  PLCI 
θ2 – LD50 2.512 4.968 2.631 6.046 
θ3 – Slope 0.401 2.033 0.471 2.390 

 
Before leaving this example, we point out that 
the (unique) “local” D-optimal design for this 
model function places half the weight at x1 = 
1.59 and the other half weight at x2 = 8.82.  This 
two-point design is the one which minimizes the 
volume (area in this instance) of the Wald CR, 
therefore focusing equally on both model 
parameters.  Again, since this design has only 
two support points, the model function will fit 
the data perfectly and provide no test for model 
mis-specification (or lack of fit). n  
 
 
Turning our attention to measures of curvature or 
nonlinearity, the following notation and 
definitions are useful. 
 



Θ = the p-dimensional parameter space. 
E = expectation surface; p-dimensional in 
     the n-dimensional sample space. 
IN (intrinsic) curvature = degree of 
     flatness of E 
PE (parameter effects) curvature = degree 
     to which SPEL in Θ are mapped onto 
     SPEL on E 
SPEL = straight, parallel, equi-spaced 
     lines (a rectangular grid) 

 
Over the past several years, numerous 
measures of nonlinearity and the like have 
been proposed including 
 
• root-mean-square (RMS) IN and PE 

measures in Beale (1960) 
• maximal IN and PE in Bates and Watts 

(1988) 
• maximal curvature measures for parameter 

subsets in Cook and Goldberg (1986) and 
Hamilton (1986), 

• bias measures in Box (1971) and Cook et al 
(1986) 

• a second-order variance approximation in 
Clarke (1980) 

• a second-order information approximation in 
Pázman (1986) 

• asymmetry measures in Ratkowsky 
(1983,1990) and Hougaard (1985) 

• reparameterization methods in Hougaard 
(1986) 

• graphical procedures such as confidence 
curves in Cook and Weisberg (1990). 

 
This extensive list often leaves the practitioner 
feeling overwhelmed and confused.  Further, 
some of the conventional curvature measures are 
spurious in the sense of indicating a problem 
when there is none and vice versa; examples are 
given in Cook and Witmer (1985).  Clarke 
(1987) points out that the IN and PE measures 
“suffer from the practical defect, however, of 
attempting to measure a multidimensional 
phenomenon by a single quantity” (p.844). 
 
By expanding the estimate of θK in powers of σ2 
so as to adjust the endpoints of the WCI to bring 
them more in line with the PLCI, Clarke (1987) 
introduces so-called marginal curvatures.  These 
marginal curvatures are then used to adjust Wald 
confidence intervals (WCI) for the parameters, 
one at a time.  If we let the WCI for θK be 
written 

 
[WL

K, WU
K], for  

WL
K = θK – t*SEK 

WU
K = θK + t*SEK 

 
then we can write the corresponding marginal 
curvature adjusted confidence interval (MCCI) 
as  
 

             [ML
K, MU

K], for  
ML

K = θK – t*(1 – Γat + βat
2)*SEK  

MU
K = θK + t*(1 + Γat + βat

2)*SEK 
 
Note that Γa and βa are functions of the second 
and third derivatives of η with respect to θ; these 
calculations can be somewhat involved since the 
first derivative (Jacobian matrix) is of dimension 
nxp, the second derivative is an nxpxp array, and 
so on.  With regard to the roles of these two 
measures, we underscore the length and 
skewness of MCCIs given in the following table. 
 

 Wald MC (Clarke) 
Length 2*t*SEK 2*t*SEK*(1 + βat

2) 
Skewness 0 2*Γa*t2*SEK 

 
So, like likelihood intervals, MCCI’s can be 
skewed (captured by Γa) and/or widened/ 
narrowed (captured by βa).  Skewed intervals are 
usually more sensible since information can 
often be asymmetric.  Finally, note that the 
Hougaard skewness measure given in SAS 
(PROC NLIN) is directly related to Γa but 
ignores βa; that this is not always a good idea is 
discussed in Haines et al 2004. 
 
Example 1 continued.  Here for θ2, Γa = 0.0903, 
βa = 0.0281.  For α = 5%, we obtain for θ2: 
 

Type Confidence interval Overlap to 
PLCI 

Wald (2.512 , 4.968) 66.2% 
MC (2.554 , 5.542) 83.4% 
PL (2.631 , 6.046) ---- 
 

Empirical and theoretical evidence shows that 
MCCI’s perform better in approximating PLCI’s 
than do WCI’s.  Note that since calculating 
PLCI’s is cumbersome, after finding a WCI and 
a MCCI, and distinguishing one of four cases (in 
the order MWWM, MWMW, WMWM, or 
WMMW), Haines et al (2004) uses a function 
(denoted f1) which assesses the overlap of the 
WCI to the MCCI as an indicator of when a 
problem exists.  Practitioners are provided an 



indication: (1) use the WCI from package (e.g., 
SAS/PROC NLIN), (2) use the MCCI found in 
SAS/IML, or (3) go through the endeavor of 
finding the corresponding PLCI.  We return to 
this function by including it in the design 
procedure given in Section 6, but first provide 
some additional examples that exemplify 
commonly chosen designs. 
 
4. Some Additional Illustrations 
 
To set the stage for the geometric design 
procedure given and discussed in the next 
section, we give several examples that illustrate 
the types of designs used by practitioners. 
  
Example 2.  Collett (2003) provides data related 
to tobacco budworms in which sets of 20 larvae 
of each gender were exposed to various doses of 
an insecticide, and the number killed or impaired 
were recorded.  The results are given in the 
following table. 
 

 Dose 
Sex 1 2 4  8 16 32 
Male 1 4 9 13 18 20 
Female 0 2 6 10 12 16 

 
Of course, these data might best be analyzed 
using binary logistic regression methods; our 
point here is to highlight the use of the design  
x = 2K for K = 0, 1, … 5. n  
 
Example 3.  ELISA (enzyme-linked 
immunosorbent assay) data are provided in Huet 
et al (1996) wherein the response is optical 
density and the independent variable (x) is of the 
form x = log10(1/d) and 1/d is reciprocal dilution.  
The chosen values of 1/d for this study (i.e., the 
experimental design) were 30, 90, 270, 810, 
2430, 7290, 21869, and 65609, or essentially,  
x = 30*3K, for K = 0, 1, … 7. n 
 
Example 4.  Seefeldt et al (1995) reports data in 
which the response is dry weight of weeds and x 
is the dose of a herbicide, and a graph of the data 
follows.  A reasonable model function for these 
data is the four-parameter log-logistic model, 
given by  
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so that, as in Example 1, θ2 is the LD50 and θ3 is 
the slope; here, θ1 and θ4 are the upper and lower 
asymptotes respectively. 

 
Noting the non-constant variances, we would be 
wise to model the variance as well, viz, 
 

        Var(Y) = σ2ηρ(x), 
 
where ρ is an additional model parameter to be 
estimated. n  
 
Example 5.  In pharmacological (PK) modelling, 
the response variable is drug concentration and 
the independent variable is time, and repeated 
measurements (over time) are recorded for each 
subject.  Such is the case in Atkinson et al 
(1993), where the three-parameter intermediate 
product (IP3) model function, 
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is used.  We choose to write this model function 
as 

  






 −

−
−

−
=

t
e

t
e 12

21

21 θθ

θθ

θφθ
η  

 
so that φ is the so-called area under the curve 
(AUC), or sum total of the drug delivered to the 
subject.  The following residual plot highlights  
 

 



that the residuals may follow a structure such as 
an AR1 error structure, and should be modeled 
as such. n  
 
The above illustrations highlight the importance 
of the correct choice for the (mean) model 
function, the variance function, and the 
correlation structure.  These examples also 
underscore some of the designs used in practice.  
Examples 2 and 3 follow the “x = a*bK” pattern, 
with a = 1 and b = 2 for Example 2, and a = 30 
and b = 3 for Example 3.  Interestingly, the doses 
chosen for Example 4 are 0, 0.066, 0.198, 0.660, 
1.98, and 6.60, or 0, c, 3c, 10c, 30c, 100c for c = 
0.066.  Finally, the time points chosen for 
Example 5 are 1/6, 1/3, 1/2, 2/3, 1, 1.5, 2, 2.5, 3, 
4, 5, 6, 8, 10, 12, 24, 30 and 48 hours; optimal 
design strategies for PK models is discussed in 
Retout et al (2002).  In the next section, we 
explore the geometric design approach used in 
Examples 2 and 3. 
 
5. Robust Geometric Design Strategy 
 
Returning to the LL2 model highlighted in 

Example 1, and for t = 3)2/(
θ

θx , the local D-

optimal design places the weight ω = ½ at each 
of t1 = 0.352175 and t2 = 1 / t1 = 2.839498; D-
optimality of this design is confirmed by noting 
that the corresponding variance function, 
graphed below, does not exceed the line y = 2. 
 

   
It follows that one can solve for the values of x 
by solving the equations x1 = θ2 (0.352175)1/ θ3 
and x2 = θ2 (2.839498)1/ θ3 for an array of choices 
of θ2 and θ3.  Barring such a (pseudo-Bayesian) 
strategy, optimal designs for this model suffer 
from only having two support points. 
 
Similar results are observed for the three-
parameter log-logistic (LL3) model function 
given by the expression  
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Not surprisingly, the D-optimal design for this 
LL3 model includes the two given for the LL2 
model along with the point x = t = 0, and D-
optimality is indeed established from the 
following graph of the corresponding variance 
function. 
 

 
 
A rival strategy to choosing an optimal design – 
provided the loss in information is not too great 
– is to seek a design with a geometric pattern 
akin to the designs used in Examples 2 and 3 in 
the last section.  Thus, for the LL3 model 
function, we choose 
 
x1 = 0, x2 = a, x3 = a*b, x4 = a*b2, and x5 = a*b3, 
 
with the weight ω placed at x1 = 0 and the 
remaining weight 1 - ω divided evenly across the 
remaining four points.  Subject to these 
constraints and choosing the D-optimality 
criterion, we thus seek designs to maximize the 
determinant of the information matrix over the 
triple (a, b, ω).  Regardless of the values of θ2 
and θ3, this approach produces designs for which 
the expected response are approximately 100%, 
80%, 60%, 40% and 20% of the maximum value 
of E(Y) (i.e., θ1) , and are thus easily obtained 
given a reasonable sketch of the anticipated 
model function.  This situation is graphed below 
for θ2 = 4 and θ3 = 2, for the optimal a = 1.945, b 
= 1.597, and ω = 0.326.  Note that the x-values 
are then approximately 0, 2, 3, 5 and 8. 
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Since the weight at x = 0 is approximately 1/3, a  



final sample size of N = 6n is indicated. 
 
We can assess the loss of information of the use 
of the design ξ relative to the three-point D-
optimal design (ξD) by using the D-efficiency, 
 

  DEFF = [det(ξ)/det(ξD)]1/p 
 
In this case, it turns out that DEFF = 94.8%, 
meaning that the use of this five-point geometric 
design results in just a 5.2% information loss, yet 
it provides us with a means to test for lack-of-fit, 
and may thus be more practical.  We point out 
that the rival geometric design which takes 
measurements at x = 0, 1, 2, 4, 8, results in an 
information loss of approximately 12.5%. 
 
6. Robust MC-Compromise Design Strategy 
 
As indicated at the end of Section 3, a reasonable 
and reliable measure of nonlinearity associated 
with the kth model parameter is the function f1, 
which itself depends on the corresponding 
marginal curvature.  We can thus combine 
variance minimization and curvature reduction 
into one design criterion function by considering  
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Here λ is chosen between 0 and 1; note that λ =1 
corresponds to D-optimality, and λ = 0 
corresponds to the reduced curvature (RC) 
design, or maximizing the overlap between the 
WCI and the MCCI for θk. 
 
Example 1 continued.  For the LL2 model 
function and the above parameter values, the D-
optimal design is the equal-weight two-point 
design {x1 = 1.587, x2 = 8.816}, and the 
generalized variance is graphed below.  In this  
 

 

contour plot, x1 is plotted on the vertical axis, x2 
is plotted on the horizontal axis, and the contours 
correspond to equal generalized variance, with 
the minimum at the point (x1 = 1.587, x2 = 
8.816). 
 
Similarly, the RC design is the equal-weight 
two-point design {x1 = 2.458, x2 = 9.455}, and 
contours of the function f1 are graphed below. 
 

 
 
For this model, the design obtained by 
minimizing the above criterion function would 
lie somewhere between these two designs, 
depending on the choice of λ. 
 
So as to compare various design strategies, we 
evaluate the performance of six designs here.  
The first design (ξ1) is the original six-point 
design used in this study, x = 1, 2, 3, 4, 5, and 6.  
The next design (ξ2) is three replicates of the D-
optimal design and the third design (ξ3) is three 
replicates of the RC design.  The fourth design 
(ξ4) is two replicates of the D-optimal design and 
one replicate of the RC design, whereas the fifth 
design (ξ5) is one replicate of the D-optimal 
design and two replicates of the RC design.  In 
order to tie our methods here with those of the 
previous section, our last design considered here  
(ξ6) is a six-point geometric design of the form a, 
a*b, a*b2, … a*b5.  The optimal value of “a” 
here turns out to be very nearly unity and 
optimal b = 1.665, so this design is x = 1, 1.665, 
2.772, 4.615, 7.684, and 12.79.  In order to 
visualize these six designs, we provide a plot in 
the Appendix at the end of the paper. 
 
In order to assess each of these six designs, we 
record the generalized variance (denoted “G-
Var”) and the function f1 (for the parameter θ2) 
in the following table.  Not surprisingly, 
designs ξ2 - ξ5 do quite well here in terms of both  



measures, whereas the chosen uniform design  
 

Design G-Var f1(θ2) 
    ξ1 444.5   (76.4%) 0.797   (89.5%) 
    ξ2 259.2 (100.0%) 0.830   (93.2%) 
    ξ3 308.6   (91.6%) 0.891 (100.0%) 
    ξ4 269.0   (98.2%) 0.844   (94.8%) 
    ξ5 284.8   (95.4%) 0.864   (97.0%) 
    ξ6 314.9   (90.7%) 0.833   (93.6%) 

 
(ξ1) does not fair well at all.  The geometric 
design (ξ6), on the other hand, performs quite 
admirably.  Similar results have been observed 
via simulation and for other settings. n  
 
7. Conclusion and Recommendations  
 
This paper highlights several important points 
when designing studies involving nonlinear 
regression modelling.  First, the complete model 
needs to be taken into consideration, including 
the assumed distribution of the response 
variable, the mean model function, the variance 
function (including covariance structure), and the 
link function.  Second, optimal designs with 
minimal support in general provide no ability to 
test for model mis-specification, and are 
therefore of only limited use.  Third, in most 
settings, curvature needs to be considered and 
should be included in the design criterion; our 
criterion uses Clarke’s marginal curvature 
measures.  Finally, geometric designs provide a 
reasonable and important class of designs worth 
considering – especially those of the form a*bK 
illustrated here, and where “a” and “b” are 
chosen in some optimal sense.  For example, in 
the example at the end of the last section, the 
choice b = 1.665 translates into dilutions of 1/b ≈ 
0.6006, or about 60%.  These latter designs are 
thus usually practically feasible, and the 
additional support points provide the researcher 
with the ability to test for model lack of fit. 
 
Note that the variance-curvature criterion given 
in the previous section is only one of several 
which can be suggested.  For example, Clarke 
and Haines (1995) introduces an alternate design 
criterion which yields designs with reduced 
curvature.  Clearly more research is needed 
comparing these two criteria. 
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