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Abstract: This note underscores important considerations that should be
taken into account when teaching students to check for inadequacies of a
given linear, nonlinear or logistic regression models. Key illustrations are
provided which underscore the shortcomings of currently used procedures.
A brief overview of nonlinear regression models is given in order to lay the
foundation for testing for lack of fit in nonlinear models. This paper also
introduces a new ’scaled’ binary logistic regression model to highlight po-
tential problems with the usual logistic model, and implications for choosing
a robust optimal experimental design are also underscored and discussed.
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1. Introduction

Box (1979) reminds us that although no statistical model is ideal, some models
are useful and beneficial for accurately representing diverse phenomena and mech-
anisms. Thus, in our statistics courses we underscore that scientific researchers
often find that linear, generalized linear, nonlinear, and survival regression models
are helpful for modelling various biological, chemical and medical processes. We
also point out that once such a model is fit to a given set of data, it is incumbent
upon the researcher or statistician to check the assumed model for inadequacies
- that is, the so-called ’lack of fit’ of the model. Indeed, standard regression text-
books such as Seber and Wild (1989); Lindsey (1997, 2001); Draper and Smith
(1998); Krzanowski (1998); Rawlings et al (1998); Collett (2003a,b); and Seber
and Lee (2003) stress the importance of checking for such model mis-specification.
Additional regression and modelling references include Ratkowsky (1983, 1990);
Bates and Watts (1988); Huet et al (1996); Harrell (2001); and Agresti (2002,
2007).

Through a series of key illustrations, this paper helps students see the po-
tential inadequacies associated with the usual goodness of fit tests for popular
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regression models, and proposes important steps to take to guard against incor-
rect conclusions. These methods are given for simple linear regression models in
Sections 2 and 3. Background and suggestions to detect lack of fit in nonlinear
models are given in Sections 4 and 5. In Section 6, the assessment of model mis-
specification in binary logistic regression is discussed after we introduce a new
methodology to help determine the correct scale to use for this model. Finally,
the implications for the prudent choice of an efficient experimental design is given
and discussed in Section 7.

2. Testing for Lack of Fit in Linear Models

We adopt here the usual notation used for linear regression models in intro-
ductory textbooks. Thus, the homoskedastic Gaussian linear model is written
y = Xβ + ε, where the vector of errors are assumed to follow a Nn(0, σ2I) distri-
bution. In this setting, the estimator b that minimizes the error sums of squares
function,

S(β) = εT ε = ||y − Xβ||2 = [y − Xβ]T [y − Xβ]

is both the least-squares estimator and maximum likelihood estimator. The pre-
dicted response vector is then y∗ = Xb = PXy. In this expression, PX is an
idempotent matrix, and since PXX = X, this projection matrix projects onto
C(X), the column space of X. Further, the residual vector is e = y − y∗ =
(I − PX)y, and the residual sum of squares is denoted here RSS = S(b) =
eTe = ||y − Xb||2 = yT (I − PX)y.

In many instances, it is prudent to write the above model as

y = Xβ + ε = [X1|X2]β + ε = X1β1 + X2β2 + ε

Here, X is of dimension n × p, X1 is n × (p − q), and X2 is n × q. When
our interest centers on testing the hypothesis H : β2 = 0 versus A : β2 6= 0, the
relevant test is the so-called Full-and-Reduced F test,

F ∗ =
(RSSH − RSS)/q

RSS/(n − p)
(2.1)

In this expression, RSS is the above residual sum of squares whereas RSSH is
the value of RSS under the constraint imposed under the null hypothesis H;
when the H is true, F ∗ in equation (2.1) has a central F distribution with q and
(n − p) degrees of freedom. Following Seber and Lee (2003, p.100), we can write
RSSH − RSS = yTP2y = ||P2y||2 and RSS = yT (I − PX)y = ||(I − PX)y||2.
Here P2 is the projection matrix associated with R2 = (I−PX1)X2, the subspace
of C(X2) which is orthogonal to C(X1).
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Interestingly, for datasets involving at least one repeat observation, students
are often initially surprised to learn that the usual Lack of Fit (LOF) test uses
the same F test statistic as the one given in equation (2.1); see for example
in Draper and Smith (1998, p.47). But, in the case of the LOF test, there
is an important distinction with the above idea of attempting to find a more
parsimonious sub-model: for LOF, we are looking at how our assumed linear
model fares when compared with the highest order polynomial that can be fit to
the data. Thus, if our assumed model is y = X1β1 + ε, the LOF test assesses
whether the additional terms, X2β2, are necessary so that really the model should
be y = X1β1 + X2β2 + ε instead.

Example 1. Consider the data plotted in Figure 1, wherein the simple linear
regression model is assumed to accurately describe these data.
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Figure 1: Plot of data and fitted line for Example 1

Since these data involve repeated measurements and since the design involves
three support points, the highest order polynomial that can be fit to these data
is a quadratic regression model, yk = β0 + β1xk + β2x

2
k + εk. As our students

learn, in general, the so-called “Full model” for a repeated measurement-design
with S support points is an (S − 1)st-degree polynomial, which is equivalent to
the one-way ANOVA model with S levels of the factor. Thus, for these data, the
LOF test is equivalent to testing H : β2 = 0 in the larger (quadratic) model.
Here, the LOF F statistic (F1,3 = 8.17, p = 0.065) is just the Full and Reduced
F statistic comparing the assumed line with the highest order polynomial (i.e.,
quadratic here). Although the p-value of 6.5% (barely) exceeds the usual cut-of
of 5%, one might be somewhat suspicious of the assumption of linearity for these
data in light of the above graph.
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It is also important to point out to students that the Lack of Fit test compares
the assumed linear model with the highest order polynomial, and so depends to
a large degree upon the chosen design. This point is discussed further in Section
7 and illustrated in the next section.

3. Some Cautions Related to Linear Models and Lack of Fit

It turns out that sometimes the usual Lack of Fit test — which compares
the model function η = X1β1 with the highest-order polynomial model function
η = X1β1 + X2β2 — may miss some important intermediate models, and thus
may miss the inadequacy of the assumed model function (η = X1β1). Here is an
illustration.

Example 2. A line is fit to the data plotted in the following graph, involving
a 4-point design with 2 replicates at each support point.

For these data, the assumed model (the line) looks inadequate, but the lack of
fit test below indicates otherwise (F2,4 = 3.73, p = 0.122). It turns out that what
is masked here is that the quadratic effect is significant, and this is not detected
in the above Lack of Fit (LOF) test since the LOF test lacks power to detect
intermediate departures from the assumed line. We see this by using orthogonal
polynomials, which remove the inherent confounding so that the linear, quadratic
and cubic effects are each estimated in an orthogonal or “independent” manner.
When we do this for these data, the quadratic effect appears to be marginally non-
significant since p = 0.053 > 0.05. However, this underscores our second warning:
that all available degrees of freedom (and corresponding sums of squares) should
be used in the estimation of σ2 in small studies such as this one. Since it is clear
that the cubic effect is not significant here (p = 0.767), its sums of squares and
single degree of freedom should be absorbed into the estimation of σ2. When this
is done, our estimate of σ2 changes from 0.495 on 4 degrees of freedom (dfs) to
0.5075 on 5 dfs, and this increased power gives a p-value for the quadratic term
of p = 0.030.

In sum, for these data the LOF test indicates that the line is adequate even
though the quadratic model fits the data much better. This situation arises since
the LOF test here compares the line with the cubic model, and thus misses the
important intermediate (quadratic) model.

The above example points out another important consideration, demonstrated
using the following ANOVA table associated with this data.
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Source DF SS MS F p

Regression 1 16.200 16.200 68.51 0.000
Residual Error 6 1.419 0.236
Lack of Fit 2 0.924 0.462 3.73 0.122
Pure Error 4 0.495 0.124
Total 7 17.619

The worse-case scenario would be one where all of the “0.924” LOF sum
of squares (SS) is associated with only one degree of freedom (df) and zero SS
with the other df. Then, the worse case LOF test statistic would be F1,5 =
(0.92375/1)/(0.4950/5) = 9.33, and the corresponding p-value would be p =
0.0283. That is, we need to be mindful of the matrix R2 = (I − PX1)X2 and of
this worse-case setting, which provides a lower bound for the LOF p-value. If this
lower-bound p-value is high (e.g., over 0.05), then the model is probably adequate;
if it is not, then further analysis is needed wherein the some intermediate models
should be examined and compared with the assumed model.

4. Overview of Nonlinear Modelling

Before discussing the assessment of model mis-specification for nonlinear mod-
els, we first provide students with some helpful background in nonlinear regression
models; additional results are given in Ratkowsky (1983, 1990); Bates and Watts
(1988); Seber and Wild (1989); and Huet et al. (1996).

Indeed, whereas linear models may be used at the preliminary stages of study-
ing a given process, nonlinear models are often more appropriate and useful as
one’s knowledge and understanding of the mechanism deepens. Interestingly, non-
linear models also arise in situations involving linear models but where interest
centers on a nonlinear function of random variables; examples include Pearson’s
correlation coefficient in simple linear regression and relative potency involving
the ratio of two Gaussian sample means. Thus, in contrast with linear models,
model parameters in nonlinear models are often paramount and have important
practical interpretations. Since the class of nonlinear regression models is quite
large, we focus in this Section only on some important two-parameter nonlinear
models.

Two popular examples of concave asymptotic growth models are the SE2
and MM2 model functions given in the following table. The latter model has
widespread application in modelling enzyme kinetics. In both models, θ1 is the
upper asymptote for each of these model functions. In the MM2 model, θ2 is
the so-called LD50 parameter, so that θ2 is the value of the explanatory variable
whereby the expected response is one-half the value of the upper asymptote. In
both models, the expected response is assumed to be zero at x = 0; when this
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is unreasonable, a third parameter can be added to each of these models to shift
the curve up or down.

In contrast, the IP2 model function with θ1 > θ2 is useful for modelling the
movement of drugs through the body or chemicals through ‘compartments’; see
for example, Box and Lucas (1959) and Atkinson and Donev (1992, p.193ff). The
corresponding curve starts at the origin indicating the belief that the expected
concentration in the target organ is zero when the tablet is ingested. Key func-
tions of the model parameters are the value of time (x) where the maximum
concentration is reached (tMAX), the expected maximal concentration at this
time point (CMAX), and the area under the IP2 curve (AUC = 1/θ2).

Commonly-Used 2-parameter Nonlinear Models

Model Function Name Model Function Equation

Simple Exponential (SE2) ηA = θ1 (1 − exp(−θ2x))
Michaelis-Menten (MM2) ηB = θ1x/(θ2 + x)
Intermediate product (IP2) ηC = θ1

θ1−θ2
(exp(−θ2x) − exp(−θ1x))

Log-Logistic (LL2) ηD = (x/θ2)
θ4

1+(x/θ2)θ3

Another key two-parameter growth model is the LL2 model function, wherein
θ2 is the LD50 and θ3 > 0 is the slope. This expression can be rewritten as
η = t/(1 + t) for t = (x/θ2)θ3 , with the corresponding decay function is thus
given by η = 1/(1 + t). The LL2 model function is equivalent to the MM2 model
function when θ3 in the LL2 model function and θ1 in the MM2 model function
are equal to unity. This is an important generalization of the MM2 model since
sometimes growth takes place first at an increasing rate and then at a decreasing
rate. Of course, if the upper asymptote is not known to be equal to one, then
an upper asymptote (θ1) can be added to the LL2 model, resulting in the LL3
model given below in Equation (5.4).

Technical details for preferring the F -statistic approach in Equation (2.1) to
other methods for nonlinear models are given in Seber and Wild (1989, chap.
5). Briefly, since intrinsic curvature is usually negligible (Bates and Watts, 1988,
chapter 7), these likelihood-based methods are considered nearly exact in terms
of coverage of nominal confidence intervals. Further, Gallant (1987, chap. 1)
argues for their superiority based on statistical power.

5. Testing for Lack of Fit in Nonlinear Models

As might be expected, testing for lack of fit (LOF) is somewhat more involved
in nonlinear models than in linear models since the corresponding intermediate
models (between the assumed and the saturated models) are less obvious. The
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model assumptions here are similar to those for linear models — that the response
variables (denoted Y) are uncorrelated, from a Gaussian distribution and with
common variance — but with the exception that the mean function here is a
specified nonlinear function (in the parameters). Of course, the global LOF test
— wherein the assumed model is compared with the highest order polynomial
(i.e., the one-way ANOVA model) — is the same as for linear models.
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Figure 2: Plot of data and fitted line for Example 2
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Figure 3: Plot of data and fitted SE2 model function for Example 2 (continuation)

Example 2 (continuation). To give a practical context to these data examined
above, if the model here relates the expected yield (i.e., E(Y )) to the amount of
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fertilizer applied (x), then we might then posit the homoskedastic Gaussian SE2
model function. As pointed out above, this is a concave growth curve, and use of
this model is predicated upon the belief that crop yield increases at a decreasing
rate with the additional application of more and more fertilizer. Thus, nonlinear
modelling in practice is partly based on choosing a model that fits the data and
partly on (scientific or otherwise) ‘common sense’. The data and fitted curve are
graphed above.

For these data, the estimates of θ1 and θ2 are 6.98 and 0.27 respectively
and the residual sum of squares (RSS) is 0.7279. In this case, the format
of the LOF test is as for linear models: here we calculate F2,4 = [(0.7279 −
0.4950)/2]/[0.4950/4] = 0.9410(p = 0.4625). More importantly, the worse case
LOF test statistic, F1,5 = [(0.7279 − 0.4950)/1]/[0.4950/5] = 2.35(p = 0.1857),
indicates the adequacy of this assumed SE2 model function.

Of course, the above F test is only appropriate for nested models. To illustrate,
the linear model (η = β0+β1xk) is nested in the quadratic model (η = β0+β1xk+
β2x

2
k) since the latter model reduces to the former when β2 = 0. We also say

that this quadratic model generalizes the linear one. Three- and four-parameter
generalizations of the SE2 model include the WEIB3 and WEIB4 (three- and
four-parameter Weibull) model functions:

ηE = θ1

(
1 − exp{−(θ2x)θ3}

)
(5.1)

and
ηF = θ4 + (θ1 − θ4)

(
1 − exp{−(θ2x)θ3}

)
(5.2)

These model functions have an inflection point whenever θ3 > 1. In the
WEIB4 model, θ4 is the lower asymptote, which is taken to equal zero in the
WEIB3 model. Also, the WEIB4 model reduces to the SE2 model when θ3 = 1
and θ4 = 0. Fitting the WEIB4 model is equivalent to the Full (cubic) model in
Example 2 since there are four support points.

On the other hand, there may be other — non-nested — models which per-
form better than the SE2 model function in cases such as Example 2. In the
case of non-nested models, regression textbooks point out that one can chose
the preferred model on the basis of the so-called Akaike’s Information Criterion,
AIC = 2f(θ∗) + 2p, where f is the negative of the marginal log-likelihood func-
tion and p is the number of model function parameters; discussion of the AIC
can be found in Harrell (2001) wherein it is recommended that a model be chosen
which produces the lowest value of AIC. For example, using the AIC measure
for the above illustration, the SE2 model function is preferred to the MM2 and
LL3 model functions, but the quadratic curve is preferred to the SE2.

Issues of model selection are sometimes challenging for nonlinear models —
especially when contrasted with linear models — since one is never completely
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assured that the ‘best’ model is even one under consideration. Our approach
has always been to be very well versed in models in use, with any shortcomings
associated with these models, and with connections between these various models;
this latter point is illustrated in Section 7 below. Additional comments regarding
model selection are given in standard texts such as Lindsey (2001, chap. 2).

For the above example, even though the AIC is lower for the fitted quadratic
model than for the SE2 model for these data, the estimated quadratic model
predicts negative yield for x < 0.27 and for x > 9.73 — which is not feasible; the
model also proposes a decline in yield for x > 5, which may also be unreasonable.
That is, for nonlinear models, the assessment of ‘lack of fit’ must be performed
using the calculated measures in conjunction with some degree of common sense
or expert knowledge related to the process or phenomenon under study. Thus,
for these data, we would probably want to choose the SE2 model function as the
most reasonable function and deem it the ‘best fit’ for these data.
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Figure 4: Plots of fitted MM2, LL3, MM3 models and two Cubic fits and the
modified Example 2 data

To go one step further along this line of reasoning and to deepen our under-
standing of lack of fit for nonlinear models, we now change of our original data
in Example 2 in the following manner: the new yield values (Y ’s) are obtained
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by subtracting 0.90 from each of the original Y ’s; the fertilizer amounts (X’s)
remain the same.

Example 2 (modification). For the new data, the LOF test for the line is
as for the original data since the data have just been shifted downward; however,
the predicted line (and quadratic curve) is negative over a larger range, and hence
would be unreasonable for the practical reasons given above.

Using the AIC measure for these modified data, the MM2 model function is
preferred to the SE2 model, although it too is inadequate as shown in the top
left of the following graph.

In the above graph, we plot the MM2, the LL3 (with the inflection point),
the MM3, and two cubic model fits (the dashed one forced through the origin)
along with the modified data. The MM3 expression is given by the equation,

ηG = θ4 +
(θ1 − θ4)x

θ2 + x
(5.3)

We also easily see now how important is our ‘expert knowledge’ about the
behavior of E(Y ) — expected yield here — when x = 0 since the estimate of θ4

in this MM3 model is negative. In the present context, even though the MM3
model fits the data well, it would thus be rejected as being unreasonable since
negative yield is impossible. The same logic leads us to reject the cubic models
since the unrestricted cubic model predicts negative yields whereas the restricted
cubic model shows a declining curve for x > 5.

As indicated above, the LL3 model function is given by the equation

ηH =
θ1(x/θ2)θ3

1 + (x/θ2)θ3
(5.4)

This model function generalizes the MM2 model function by adding a slope
parameter (denoted θ3 here); thus, when θ3 = 1, the two model functions coincide,
demonstrating that the MM2 model is nested in the MM3 model. Using the
corresponding SAS computer output given in the Appendix and noting that the
value of one is in the “Approximate 95% Confidence Interval” for θ3, we are
lead to believe that we could accept the MM2 model. This confidence interval
is the so-called ‘Wald Interval’, and is based on a linear approximation of the
model function. Equivalently, the corresponding Wald test statistic here is t∗5 =
(2.8325 − 1)/0.8028 = 2.283, yielding the p-value p = 0.0713.

On the other hand, the Full-and-Reduced F test — that is, the likelihood-
based test statistic in Equation (2.1) - yields

F = (1.3014 − 0.4974)/0.0995 = 8.0804,



Goodness of Fit in Regression Modelling 245

and the corresponding p-value of p = 0.0361. This discrepancy underscores the
fact that the Wald linear approximation can be and often is inappropriate, and
emphasizes the superiority (increased power) of the Likelihood Full-and-Reduced
F test. Our conclusion here is that these data are probably best modeled using the
LL3 model; this conclusion is based both on the LOF and the Full-and-Reduced
F tests, and on scientific common sense.

The above example underscores the intricate nature of testing for LOF in
nonlinear models, and how this test must be used in conjunction with an under-
standing of the specific subject matter under investigation. Caution also needs
to be exercised with binary logistic regression modeling, considered next.

6. Testing for Lack of Fit in Binary Logistic Regression

As for Gaussian nonlinear models, testing for model adequacy in binary logis-
tic regression can also be challenging and more involved than for linear models. As
pointed out in introductory regression texts, binary logistic regression typically
involves taking measurements at a series of x values denoted here by x1, . . . , xw.
Then, for a given value x = xk, an independent set of nk binary experiments
are performed, and the binary logistic regression model posits that the response
random variable has a binomial distribution with parameters nk and πk and with

πk =
exp(α + βxk)

1 + exp(α + βxk)
=

exp(β(xk − γ))
1 + exp(β(xk − γ))

(6.1)

Equivalently, this model is usually expressed as

log
(

πk

1 − πk

)
= α + βxk = β(xk − γ) (6.2)

Thus, whereas students recognize that the middle term in this expression in-
dicates that this parameterization of the model is a generalized linear model, they
also observe that the parameterization on the right in Equation (6.2) corresponds
to a generalized nonlinear model. More importantly, since γ is the corresponding
LD50, its interpretation is often paramount, and so the latter parameterization
is often preferred.

The usual assessment of lack of fit for the binary logistic regression model,
discussed for example in Agresti (2002, 2007) and Collett (2003a), involves ex-
amining the corresponding standardized residuals for outliers or general lack of
fit, and checking for under- or over-dispersion which can arise with the binomial
assumption since with fixed sample sizes (the nk), this Binomial distribution has
just one parameter (πk) for modelling both the mean and variance. Of course,
one is also interested in assessing whether the linearity assumption in Equation
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(6.2) is suitable; for example, Hastie and Tibshirani (1990, p.282) and Agresti
(2007, p.124) give examples in which quadratic models fit their data better than
do linear ones.

We underscore here another important manner in which the binary logistic
regression model can be mis-specified and demonstrate ‘lack of fit’. This arises in
situations where the wrong scale is chosen for the independent variable — that is,
where for example dose or concentration values may be used but the model may
fit better using log-doses, or vice-versa. Instead of fitting the logistic model with
several scale choices for the independent variable, we propose here instead that
a so-called Box-Cox approach be used — with one very important distinction.
Whereas the transformation given in Box and Cox (1964) was applied to the
dependent variable, here it is applied to the x-variable in order to choose the
appropriate scale.

Specifically, we define the scale transformation function (for λ 6= 0)

x = z(dose) =
doseλ − 1

λ
(6.3)

Since the limit of this expression is the natural log dose, log(dose), when
λ → 0, we also define z(dose) = log(dose) for λ = 0. In similar manner, we let
γ = z(θ2) in equation (6.2) using this same scale transformation function so that
θ2 is therefore the LD50. This follows since then the right-hand side of Equation
(6.2),

β{doseλ − θλ
2}/λ (6.4)

equals zero if and only if dose = θ2, whence π = 1/2 for this value.
Thus, whereas Box and Cox transformed the dependent variable so as to

achieve approximate normality, here we transform the independent variable (dose)
so as to permit the logistic curve to better fit the data. Our goal is therefore to
use the data to estimate the scale parameter in addition to the original two
model parameters (β and θ2). If a set of data indicates that λ = 0, then the
log-dose scale is indicated; the original dose scale should be used for λ = 1. The
estimation method for all three parameters employed here is that of maximum
likelihood with an underlying Binomial distribution.

Note that when λ = 0 (so that the log-dose is indicated), the right-hand side
in Equation (6.4) is β{log(dose) − log(θ2)} = β log(dose/θ2), so πk in equation
(6.1) becomes tk/(1 + tk) for tk = (xk/θ2)θ3 as in the LL2 equation in Section
4 (using θ3 in place of β); hence, the name “log-logistic” really applies to the
logistic model but using the log-scale for the independent variable. On the other
hand, when λ = 1, then the right hand sides of Equations (6.2) and (6.4) simply
become θ3(dose − θ2), and the usual logistic model is indicated; this later model
function is denoted LOG2 here.
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We call this new three-parameter model — with parameters θ2, θ3, and λ —
the ‘scaled binary logistic regression model’, and illustrate its use next.

Example 3. The following data are reported in Collett (2003a, p.6) related to
groups of 40 mice infected with a bacterium and injected with one of five doses
of a given anti-pneumococcus serum.

Dose 0.0028 0.0056 0.0112 0.0225 0.0450

Number of mice
surviving out of 40 5 19 31 34 39
Percent surviving 12.5% 47.5% 77.5% 85.0% 97.5%
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Figure 5: Plot of data (percent survival versus dose), fitted Binary LL2 (solid
curve) and Binary LOG2 (dashed curve) model functions for Example 3

Although when the binary logistic regression model in equation (6.2) is fit
using the LOGISTIC procedure in SAS no indication of model inadequacy is re-
ported, the Minitab procedure does indicate significant model lack of fit (using
each of the Pearson, Deviance and Hosmer-Lemeshow methods). Thus, the prac-
titioner may wonder whether a quadratic term should be added to the model.
Furthermore, when these data are examined using the GENMOD procedure in
SAS, the calculated deviance statistic is more than five times the corresponding
degrees of freedom, leading many students and statistical modelers to suspect
over-dispersion. But, it turns out that neither of these diagnoses is appropriate
here - rather, these data are best modeled using the log-dose scale instead of the
dose scale.
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To see this, note that when our three-parameter scaled binary logistic regres-
sion model is fit to these data, the scale parameter is estimated to be −0.37,
with a confidence interval that includes zero but excludes one. Also, when this
model is fit with λ = 0 — that is, the binary LL2 model fit — the corresponding
AIC value is lower than it is for the three-parameter model, thereby reflecting
the parsimony and preference of the LL2 model for these data.

For purposes of comparison, these data are plotted in Figure 5 along with
the fitted LL2 model function (solid curve) and the fitted LOG2 model function
(dashed curve). The superiority of the LL2 model fit for these data is then readily
apparent.

As this illustration points out, we advocate that before any other lack of fit
diagnostic tests is performed for the binary logistic model, the proper scale be
determined for a given dataset using the three-parameter scaled logistic model.
This example clearly points out inadequacies associated with logistic regression
lack-of-fit tests and diagnostics, and highlights the importance of using our scaled
logistic model to first determine the correct scale.

7. Implications for Efficient Experimental Design

As noted in Atkinson and Donev (1992) and O’Brien (1996), so-called optimal
designs for models with p model parameters often have only p support points,
and are therefore of little usefulness to test for model mis-specification. Thus,
whereas these designs may provide maximal information to estimate the model
parameters, they provide low or no information for detecting lack of fit. As
pointed out above at the end of Section 2, choice of the experimental design
is thus paramount when, after the model parameters have been estimated, one
wishes to test for goodness-of-fit. This follows since the choice of the design
dictates the nature of the departure of the assumed model that can be detected.
Practitioners, therefore, are typically interested in choosing near-optimal (so-
called robust optimal) designs useful for both estimation and testing for model
adequacy.

Example 4. To illustrate, consider the situation in which we believe that the
usual simple linear regression model (y = β0+β1x1+ε) is appropriate, and where
we wish to choose a design both to estimate the model parameters efficiently and
to test for lack of fit of this assumed line; a related illustration is given in Draper
and Smith (1998, p.88). Suppose further that due to practical constraints we
can only choose as many as n = 12 observations, and that the independent
variable must lie in the interval between 1 and 12. Arguably the most popular
criterion for choosing an optimal design in regression settings is the D-optimality
criterion (Silvey, 1980); for this model, the D-optimal design places six replicates
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at x = 1 and six replicates at x = 12. This design is denoted Design A in the
following table. Although this design gives the maximal information in terms
of estimating the linear models parameters (and hence has 100% D-efficiency),
it provides absolutely no information for detecting lack of fit, and so is of only
limited usefulness in practical settings.

Design Design support or x-points (number of replicates) D-Efficiency

A 1 (6); 12 (6) 100.0%
B 1 (4); 6.5 (4); 12 (4) 81.6%
C 1 (3); 4.67 (3); 8.33 (3); 12 (3) 74.5%
D 1 (2); 3.2 (2); 5.4 (2); 7.6 (2); 9.8 (2); 12 (2) 68.3%
E 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12 62.8%

On the other end of the spectrum lies Design E, which takes one observation
at each of the integers between 1 and 12 inclusive. Since this design has no
replicates, it provides no estimate of ”pure error.” So although it is helpful to
check for linearity of the responses, it provides no ability to test for lack of fit in
the usual sense (nor can it be used to check the constant variance assumption).
Design B has four replicates and three equi-spaced support-points. This design
results in an information loss of 18.4% (i.e., subtracting the D-efficiency from
its maximal value of 100%), and is useful only to check for quadratic departures
of the assumed linear model. By analogy, Design C — which results in only a
marginally higher information loss - can be used to test for quadratic and cubic
departures.

Hence no one sweeping rule-of-thumb can be provided to help practitioners
choose the ’best’ design: this choice depends on the degree of faith that the
researcher has in the assumed model function and how much information (in the
data) the researcher wishes to sacrifice in order to test for lack of fit. It also
depends on the nature of the departures from the assumed (linear) model. That
said, in many situations, one might be wise to choose either Design B or C in the
above situation. Of course, a hybrid or compromise design such as the following
is also possible: four replicates at x = 1 and x = 12 and two replicates at x = 4.67
and x = 8.33.

Not unexpectedly, the situation is more complicated for nonlinear models
and generalized linear models such as the binary logistic model; so-called optimal
designs are still of limited usefulness for these models since they usually have only
as many support points as model parameters. As a result of this shortcoming, we
have proposed two methods to find so-called robust optimal designs — that is,
designs that are near optimal but which have extra support points to test for lack
of fit. We have found it very beneficial to have interested students learn about
these techniques as a part of class projects.
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Our first robust design strategy, given in O’Brien et al. (2009), provides either
uniform or geometric designs. Geometric designs are of the form with support
points x1 = a, x2 = a∗b, x3 = a∗b2, . . . , xK+1 = a∗bK , and are chosen so that
the loss in information is not too great — for example, less than 10%. Use of
these types of designs is widespread in practical settings. For example, the design
used above in Example 4 is a geometric design with a = 0.0028125, b = 2, and
K = 4. Further details on the optimal choice of these parameters for the general
setting are given in O’Brien et al. (2009); generally, computer algorithms provide
optimal choices for ‘a’ and ‘b’ here.

The second design procedure that we have proposed is useful for specific depar-
tures from the assumed model function; see O’Brien (1996). Here, the assumed
model function is embedded or nested into a larger model, called the ‘super-
model’, so that one obtains the assumed model function from the super-model
for specific parameter choices. Further, the super-model is chosen so that it has
other meaningful sub-models (beyond the assumed model function) as additional
special cases. For example, both the three-parameter Weibull (WEIB3) in Equa-
tion (5.1) and the three-parameter log-logistic (LL3) given in Equation (5.4) are
rival sigmoidal models which asymptote to the line y = θ1 (as x gets large). Thus
a larger four-parameter sigmoidal model is given in O’Brien (1996) that gener-
alizes both of these models functions (has both of these models as special cases)
and is used to provide robust designs.

To illustrate with another example, suppose that we feel that the homoskedas-
tic Gaussian two-parameter log-logistic (LL2) model correctly describes a given
process, and that we desire a robust optimal design. As noted in Section 4, this
model function can be written η = t/(1+t) for t = (x/θ2)θ3 . This model is equiv-
alent to using the scaled logistic model from the previous section with λ = 0, but
with the important distinction here that the response variable is believed to fol-
low the Gaussian distribution (with constant variance) instead of the Binomial
distribution used in the previous section. With the choice λ = 0 (and the LL2
model function), this means that we feel the model fits using the log-dose scale,
but now suppose that we have some doubt about this choice of scale, and that we
desire a design useful to confirm this choice in addition to efficiently estimating
the model parameters.

In O’Brien et al. (2009), it is shown that the D-optimal design for this LL2
model function has two support points and these points are such that η1 = 0.26
and η2 = 0.74. Indeed, as noted above, this design is therefore problematic since
it has only two support points and cannot be used to check for model adequacy.
On the other hand, the D-optimal design for the scaled logistic model with faith
that the LL2 model is correct (i.e., λ = 0) has three support points such that
η1 = 0.12, η2 = 1/2 and η3 = 0.88. This latter design is therefore suggested to



Goodness of Fit in Regression Modelling 251

test for lack of fit, and, more specifically, to test for departures from the assumed
LL2 model in the direction of a Gaussian logistic fit using a scale other than the
assumed log-dose one.

8. Conclusion

Students and applied statisticians observe that regression modeling represents
a somewhat simplified distillation of reality. Nonetheless, it can be a very effective
and meaningful tool when one chooses a good model and when good techniques
are used to check, validate and/or modify this assumed model. Throughout
this paper, we have highlighted important inadequacies with the commonly used
checks for model mis-specification, and underscored the need to test for depar-
tures from the assumed model function in the direction of meaningful “intermedi-
ate” models. In the process, we have challenged students to think critically about
statistical modeling. Whereas this is often a relatively easy task for linear models,
it involves important subtleties and keen understanding of the nature of various
nonlinear and generalized linear equations for more complex models. Also, since
choice of the experimental design is paramount in testing for goodness-of-fit, we
strongly suggest the use of robust experimental design procedures such as the
geometric or model-nesting procedures discussed in Section 7.
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Appendix. SAS PROC NLIN output for MM2 and LL3 model fits for
modified Example 3 data

MM2 Model Sum of Mean Approx
Source DF Squares Square F Value Pr > F
Model 2 73.0286 36.5143 168.35 <.0001
Error 6 1.3014 0.2169
Uncorrected Total 8 74.3300

Parameter Estimate Approx Std Error Approx 95% Confidence Limits
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th1 25.5456 35.4462 -61.1882 112.3
th2 24.4245 39.6693 -72.6428 121.5

LL3 Model Sum of Mean Approx
Source DF Squares Square F Value Pr > F
Model 3 73.8326 24.6109 247.40 <.0001
Error 5 0.4974 0.0995
Uncorrected Total 8 74.3300

Parameter Estimate Approx Std Error Approx 95% Confidence Limits
th1 4.4661 0.4633 3.2752 5.6570
th2 2.0600 0.2555 1.4033 2.7167
th3 2.8325 0.8028 0.7688 4.8962
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