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1. Introduction
In many applied branches of study, nonlinear regression models are more

accurate and reasonable for modelling various biological and chemical

processes than are linear ones since they tend to �t the data well and since

these models and model parameters are more scienti�cally meaningful. As

a result, applied statisticians are often required to provide optimal or near-

optimal designs for a given nonlinear model. As noted in O'Brien (1996) and

Atkinson et al. (2007), however, a common shortcoming of optimal designs for

nonlinear models used in practical settings is that these designs typically have

only as many support points as the number of unknown model parameters.

Although such designs may present no problem when the model function can

be assumed to be known with complete certainty and when all other model

assumptions are met, in practice researchers typically desire designs that are

near-optimal but which contain `extra' design points which can be used to test

for model adequacy. Design strategy references include Silvey (1980), Seber

and Wild (1989), Pukelsheim (1993), Dette and O'Brien (1999), O'Brien and

Funk (2003), and the reference provided therein. Robust design strategies are

given in Sitter (1992), Dette (1993), Pukelsheim and Rosenberger (1993), Zen

and Tsai (2004), Dette et al. (2005), and Bischoff and Miller (2006), and

applications of uniform designs are provided in Hedayat et al. (1997, 2002)

and Mathew and Sinha (2001).

Since sigmoidal models are used extensively in practice, this paper focuses

on the logistic class of model functions; this is a rich class of models since it

also includes the log-logistic and theMichaelis-Menten models. The geometric

designs considered here have design points of the form x1 = a; x2 =

ab; x3 = ab2:::xK+1 = abK , and their use is pervasive in biomedical



EFFICIENT SIGMOIDAL MODEL DESIGN STRATEGIES 51

and applied research. Arbitrary choices of a, b and K in these designs

can lead to experiments which are at best inef�cient and at worst useless to

estimate the model parameters and test for model adequacy. In the context

of homoskedastic Gaussian and the Binomial distributions, geometric designs

are discussed and illustrated for the log-logistic family of models, both using

the original (e.g. dose) scale and using the log-dose scale. We also examine

optimal uniform designs, or designs with support points of the form x1 =

A; x2 = A+B; x3 = A+ 2
�B; :::xK+1 = A+K

�B, providing the means

for the optimal choice of A and B, as well as an indication of whether to use a

geometric or a uniform design. In general, the geometric and uniform designs

herein have at least 90%D-ef�ciency and provide a useful and important means

to test for goodness of �t of the assumed model.

In the next section, we provide notation and background details. In Section

3, an overview of examples using geometric and uniform designs in practice is

given. Our general design methodologies are given and illustrated in Section

4 for the homoskedastic Gaussian dose-response model and in Section 5 for

the Binary Logistic case. Finally, important extensions are discussed and

contrasted in Section 6.

2. Background in design and nonlinear models
Choosing an optimal design for parameter estimation for a given nonlinear

model is challenging for several reasons, most notably since the optimality

criterion must be chosen from amongst several and since the chosen design

depends upon the unknown model parameters. Equally important is the

assessment of the validity of the assumed model after the data has been

observed. Since most optimal designs only have as many support points as

model parameters, these minimal-support designs cannot in general be used to
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evaluate lack of �t. Practitioners therefore seek instead near-optimal so-called

`robust' designs � such as the geometric and uniform designs provided here.

An n-point design is denoted here as � and written

� =

�
x1; x2; :::; xn
!1; !2; :::; !n

�
:

In this expression, the !k are non-negative weights that sum to one, and the

xk (which may be vectors) belong to the design space and are not necessarily

distinct. Also, in the usual homoskedastic Gaussian setting for the model

function � (x; �), the n � p Jacobian matrix is written V = @�=@� and

the p� p Fisher information matrix is given by M(�; �) = VT
V, where


 is the diagonal matrix with diagonal elements !1, !2; :::; !n. Then,

the �rst-order (and asymptotic) variance of the least-squares estimator of the

p-vector � is proportional to M�1, so designs are often chosen to minimize

some convex function of M�1. For example, designs which minimize its

determinant (or equivalently those which maximize the determinant of M) are

called D-optimal, and those that minimize its trace are called A-optimal. Since

for nonlinear models, V depends upon �, a Bayesian strategy is sometimes

used; see Atkinson et al. (2007) and Section 6 below. Whenever the sample

size (n) is a multiple of (K + 1), the designs considered here are exact

designs, so that D-optimal designs maximize the determinant of VTV; in

all other cases, we consider the approximate designs as given in the above

expression.

The A-optimality criterion is generally used in �block design� situations

(including cyclic-, row-, column- and alpha-designs) since it focuses on

minimizing the average variance of the parameters (or contrasts of parameters).

In contrast, D-optimality is preferred for regression models since this criterion

(but neither A- nor E-optimality) is invariant to a linear or nonlinear change in

scale; see Silvey (1980) and O'Brien and Funk (2003). Since we consider
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here only (nonlinear) regression models, we therefore use the D-optimality

criterion.

For a given model, when one wants to compare an arbitrary design � with

the D-optimal design, �D, a useful measure of the loss of information is the

D-ef�ciency,

DEFF =

�
det (M (�))

det (M (�D))

�1=p
: (1)

The D-ef�ciency measure is used here to compare to the D-optimal design a

(K+1)-point geometric design with support points of the form x1 = a; x2 =

a�b; x3 = a
�b2; ::; :xK+1 = a

�bK and a (K+1)-point uniform design with

support points of the form x1 = A; x2 = A+B; x3 = A+2
�B; :::; xK+1 =

A+K�B.

Nonlinear models and Binary Logistic models � including the Sigmoidal

growth and decay models considered here � are examined in Ratkowsky

(1983,1990), Bates and Watts (1988), Seber and Wild (1989), Huet et al.

(1996), Agresti (2002, 2007), and Collett (2003); additional theoretical results

are given in Gallant (1987) and McCullagh and Nelder (1989).

Due to its widespread popularity, our focus here is the two-parameter log-

logistic (LL2) model function,

� (x; �) =
1

1 + t
=

1

1 + (x=�2)
�3
: (2)

In this expression, t = (x=�2)�3 :

A related model function is the two-parameter logistic (LOG2) model

function, given by the equation

� (x; �) =
1

1 + u
=

1

1 + e�3(x��2)
: (3)

Here, u = e�3(x��2). In both of these expressions, the parameter �2 is the

so-called LD50 (also called ED50 or LC50), and is the value of x such that

� = 1
2 : When the slope parameter �3 in the LL2 model function is positive,
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the associated graph is down-sloping from an �upper asymptote� of unity (for

x = 0) to a lower asymptote of zero (for very large values of x); similar results

hold for the LOG2 model function but with the upper asymptote occurring at

very large negative values of x. Graphs of these two model functions for the

LD50 = 5 and various choices of the slope parameter are given in Figure 1.
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Figure 1 Graphs of LL2 model function (top row) and LOG2 model function
(bottom row) for th2 = �2 = LD50 = 5 and various slopes (th3 = �3)
indicated above each plot. For both these functions, �2 controls the left
or right shift (held constant here) and �3 controls the slope or steepness of
decline of the curve

In settings where the upper and lower asymptotes in the LL2 setting are

not 1 and 0, but need to be estimated, this model is easily extended to the
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four-parameter log-logistic (LL4) model function,

� (x; �) = �4 +
�1 � �4

1 + (x=�2)
�3
: (4)

When the slope parameter in this expression is positive, �1 is the �upper

asymptote� (at x = 0) and �4 is the lower asymptote (for large x). This

LL4 model function has been extensively applied in applications as diverse

as nutrition (Morgan et al., 1975), bioassay (O'Connell et al., 1993), weed

science (Seefeldt et al., 1995), and pharmaceutical science (Fedorov et al.,

2007). Here, we focus on designs for the LL2 and LOG2 models; additional

results related to the three- and four-parameter logistic models are given in Li

and Majumdar (2008).

To connect the LL2 and LOG2 model functions, we now de�ne the three-

parameter scaled logistic (SL3) model function,

� (x; �) =
1

1 + v
=

1

1 + e�3[z(x)�z(�2)]
: (5)

In this expression, v = e�3(z(x)�z(�2)) and we use the Box-Cox

transformation for both x and �2,

z (x) =
x
 � 1



: (6)

Clearly the LOG2 model function is a special case of the scaled logistic

function when 
 is chosen to equal 1, and the LL2 model function corresponds

to 
 ! 0. This scaled logistic model is important both to connect these two

model functions under one generalized model �umbrella� and since the LOG2

model results in this model when the dose scale is used whereas the LL2 model

function results when the log-dose scale is used.

Since in practice one can only rarely be certain which scale should be used,

O'Brien et al. (2007) demonstrate �tting the scaled logistic model so as to

�rst determine the appropriate scale. When this is not done, errors can easily
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result. For example, practitioners and students are easily left confused when

Example 4.1 in Myers et al. (2002) �ts the Binary Logistic model to a set of

data on both the concentration and the log-concentration scale but provides no

indication of which scale is preferred and why. Similarly, the wrong scale

is used for Example 13.1 in Montgomery et al. (2001) in �tting the Binary

Logistic model; this is clearly indicated when one �rst �ts the scaled logistic

model. Indeed, an important rami�cation of this error is that the LD50 and

other model parameters are often estimated incorrectly and inef�ciently. We

return to issues of the proper scale in Section 6.2.

3. Some representative applications of geometric
and uniform designs

In this section, we brie�y highlight the widespread usage of the geometric and

uniform designs by providing some representative illustrations. As speci�ed

above, (K + 1)-point geometric design support points are of the form x1 =

a; x2 = a
�b; x3 = a

�b2; :::; xK+1 = a
�bK , with the (a, b, K) terms speci�ed

by the researcher; similarly, (K + 1)-point uniform design support points can

be written x1 = A; x2 = A + B; x3 = A + 2�B; :::; xK+1 = A +K�B,

so that the (A, B, K) terms need to be chosen. The illustrations given here

exemplify the ubiquitous nature of geometric and uniform designs in the

applied literature and provide useful contexts for the guidelines given in the

next sections.

Illustrations include:

� In the Binomial Logistic setting, Collett (2003) provides data wherein the
chosen design is of the above geometric structure with a = 1; b = 2 and
K = 5.

� Variations on this �halving dilution� (b = 2) design approach are used in
Finney (1976), Price et al. (1987), Giltinan et al. (1988), Gouws (1995),
and Zocchi and Demétrio (2000).
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� ELISA data are provided in Huet et al. (1996) wherein the response is
optical density and the independent variable is of the form x = log10(1=d)
and 1=d is reciprocal dilution. The chosen design for the reciprocal
dilutions are essentially of the geometric structure with a = 30; b = 3,
and K = 7. Myers et al. (2002) provides a similar (essentially) geometric
illustration with a = 0:10; b = 1:45, and K = 6.

� A (near) uniform design is used in Bailer and Piegorsch (2000), for which
x = 0; 80; 160; 235 and 310.

� Seefeldt et al. (1995) report data in which the explanatory variable is the
dose of an herbicide, and a reasonable model function for these data is the
LL4 model function given in Equation (4). For this study, the authors
used the design points x = 0; 0:066; 0:198; 0:660; 1:98 and 6:60. Thus,
in addition to the zero point, this design combines two geometric designs
both with b = 10 � the �rst one uses a1 = 0:066 and the second with
a2 = 0:198 = 3

�a1. Stokes et al. (2000) provide a similar illustration but
with a1 = 0:01; a2 = 0:03 = 3�a1, b = 10, andK = 3.

With these examples in mind, it is important to distinguish between the

geometric designs considered here and the serial dilution design strategy

explored in Chase and Hoel (1975) and illustrated in Verkooyen et al. (1996)

and Sigurdsson et al. (2002). In the later instances, a researcher is unable to

count, for example, the number of viruses in a medium and then serially dilute

(for example using a dilution factor of 10) the medium until a count is indeed

possible; this resulting count is then used to estimate the original number.

On the other hand, although geometric designs may indeed be obtained by

a �dilution,� the goal here is to assess, for example, the toxicity of a chemical

using the dose-response regression models given above.

4. Ef�cient designs in the homoskedastic Gaussian
case

When it is reasonable to assume that the response variable follows the constant-

variance Gaussian distribution with mean given by the LL2 model function and
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design region [0; 1), for a chosen value of K we obtain a (K + 1)-point

geometric design with support points x = a; a�b; a�b2; :::; a�bK by �rst

choosing the corresponding value of `m' from the following table.

Table 1 Optimal values of m and D-ef�ciencies (D-EFF) for various choices
of K for the Gaussian LL2 and LOG2 models. Values of m and K are then
used to obtain values of a and b or A and B to be used to obtain experimental
designs

K 1 2 3 4 5 6
m 8.0627 3.4025 2.4845 2.0598 1.8215 1.6698
D-EFF (%) 100.0 92.21 91.40 91.03 90.85 90.74

K 7 8 9 10 11 19
m 1.5650 1.4884 1.4299 1.3839 1.3468 1.1952
D-EFF (%) 90.67 90.62 90.59 90.56 90.55 90.48

Next, a priori estimates of the model parameters �2 and �3 are used to

obtain the values

b = m1=�3 and a = �2=bK=2: (7)

These values are then used to generate the desired geometric design. The

optimal values of m for given choices of K provided in Table 1 have been

obtained using computer programs in which geometric designs are provided

that minimize the D-optimality criterion given in Section 2. Sample SAS R


and GAUSS R
 computer code to obtain these designs is available from the

authors. D-ef�ciencies are also calculated and given in the table so as to convey

the degree of the loss of information in using a geometric design instead of the

two-point D-optimal design.
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Example 5. To illustrate, if we desire a 7-point geometric design (K = 6),

and we feel that reasonable parameter choices are �2 = 5 and �3 = 2, then we

obtain from Table 1, m = 1:6698 with associated D-ef�ciency = 90.74%, and

by calculation b = 1:2922 and a = 2:3172. The optimal geometric design

therefore has support points x = 2:317; 2:994; 3:869; 5:000; 6:460; 8:349 and

10:788. The value b = 1:2922 here means that this design uses a dilution

of 1=b = 0:77 or approximately 3
4 ; thus, for every three parts of the active

substance, the researcher would then add four parts of water or similar inert

substance. That is, in many settings this is not impractical so that choosing a

value of b other than an integer is indeed often viable. �
Several points are worth noting when examining the values given in Table

1 and the methodology given here to obtain a and b using equation (7).

First, even for the very large 20-point geometric design (K = 19), the

information loss is not too great � only 9.5% for this model. This implies

that in some sense these optimal geometric designs are `close' to the D-optimal

design, where `closeness' is de�ned in terms of the determinant of the Fisher

information matrix. Indeed, in many practical settings, our experience shows

that researchers are willing to sacri�ce such a small amount of parameter-

estimate ef�ciency in order to obtain a robust near-optimal design which can

be used to test for model mis-speci�cation. This willingness to sacri�ce some

ef�ciency to validate the model as well as the ease to implement geometric

designs in practice is perhaps best evidenced by the extensive list of examples

given in the previous section.

Second, the case K = 1 corresponds to the two-point (local) D-optimal

design. For t de�ned by the expression t = (x=�2)�3 so that the LL2 model

function in equation (2) is written � = 1=(1 + t) � we point out that the
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reciprocal values of t in the D-optimal design solve the expression

(1 + t) + 2 (1� t) log (t) = 0: (8)

These values are t1 = 0:352175 and t2 = 2:839497, and are such that

the expected responses are �1 = 0:739549 and �2 = 0:260451, so that

the D-optimal design support points correspond to the expected responses

being symmetric around 1
2 . Of course, this is no coincidence for the LL2

model function since for reciprocal values t1 and t2 = 1=t1, we have

�1 = 1 � �2. Symmetries associated with minimal-support optimal designs
for logistic models are highlighted in Mathew and Sinha (2001).

We observe similar reciprocal patterns for all other choices of K.

To illustrate, for Example 5 above, the optimal values are t =

0:2148; 0:3586; 0:5989; 1:0000; 1:6698; 2:7883 and 4:6560 (so

the �rst and last are reciprocals, as are the second and penultimate,

etc.), and the corresponding expected response values are � =

0:8232; 0:7360; 0:6254; 0:5000; 0:3746; 0:2640 and 0:1768; these values

are repeated in the �rst row of Table 3 to facilitate comparisons. Also, we

point out that in general the optimal values of t are of the form t = mr,

with m chosen from Table 1 for the corresponding value of K and with

r = �K=2;�(K � 2)=2;�(K � 4)=2; : : : ; (K � 2)=2, and K=2.

Interestingly, this means that the optimal choices of t do not depend upon the

a priori guesses of the model parameter (�2 and �3) since m in Table 1 does

not depend upon these values. That said, these assumed parameter values are

very important in choosing the corresponding design support points since here

x = �2t
1=�3 .

Third, although we return to the issue of incorrectly specifying �2 and/or

�3 in greater detail in Section 6, we point out how important it is to understand

the roles of these model parameters in the LL2 model function given in
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equation (2). As such, we �nd it very useful to discuss graphs such as those

in Figure 1 with practitioners seeking experimental designs for this model.

Since �2 is the model LD50 parameter, it can usually be quite accurately

approximated. In contrast, practitioners often �nd the analogous parameter in

the Weibull and Richards models considered in Dette and Pepelyshev (2008)

harder to interpret and to approximate. The plots on the top of Figure 1 are

helpful to understand the role of the slope parameter in the LL2 model function.

Often, researchers can only give a range for these parameter values, and in

Section 6 we return to the impact this uncertainty has on our recommendations

for optimal geometric designs.

Furthermore, we have observed that when seeking optimal geometric

designs for the two-parameter Gaussian logistic (LOG2) model function given

in equation (3) and with design region (�1; 1), none of these geometric
designs fared as well as uniform designs � i.e. those with support points of the

form x = A;A + B;A + 2�B; : : : ; A + K�B. Interestingly, but perhaps

not unexpectedly, the corresponding optimal values of m for these designs are

exactly those given in Table 1 (and with the same D-ef�ciencies), and with the

new relations,

B = log (m) =�3 and A = �2 �K�B=2: (9)

The connection between equations (7) and (9) is therefore obvious and

underscores the fact that u = expf�3(x� �2)g in the LOG2 function simply
takes the role of t in the LL2 model function. Thus the D-optimal design for

the LOG2model solves equation (8) with t replaced by u; see the �rst two rows

of Table 4 to visualize these designs and appreciate the difference between the

support points of the above geometric design for the Gaussian LL2 model and

the uniform design for the Gaussian LOG2 model. We return to the issue of

discriminating between the LL2 and the LOG2 model functions in Section 6.2.
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5. Ef�cient designs in the binary logistic case
As we noted in Section 3, it sometimes is appropriate to use either of the LL2

or LOG2 model functions with the Bernoulli or Binomial distribution � the

so-called Binary Logistic model. That is, for a given value of x, one assumes

for this model that each of n experiments results in one of two independent

Bernoulli outcomes with success probability �; of course, n here may depend

upon x. Counterparts of the LL2 and LOG2 model functions given above in

equations (2) and (3) are

� =
1

1 + t
=

1

1 + (x=�2)
�3

(10)

and

� =
1

1 + u
=

1

1 + e�3(x��2)
(11)

respectively; the respective design regions are [0; 1), and (�1; 1). This
latter equation can be written in the familiar form,

log

�
�

1� �

�
= ��3 (x� �2) : (12)

The negative sign on the right-hand side of equation (12) is necessary for �3 >

0 when the (decay) curves are down sloping as in Figure 1; it is removed in the

case of growth curves. Also, since the parameters enter into these expressions

in a nonlinear manner, these models now fall under the rubric of generalized

nonlinear models; this results since the LD50 parameter is explicitly made

one of the model parameters. For the LL2 model, the corresponding right-

hand side in equation (12) is ��3 flog (x)� log (�2)g. Similarly, the Binary
counterpart of the SL3 model in equation (5) can also be written as in equation

(12) but with right-hand side equal to the expression ��3 fz (x)� z (�2)g,
where z(x) is the Box-Cox function de�ned in equation (6).

Our approach and �ndings here are analogous to those given in the previous

section but with two important distinctions. First, whereas in the Gaussian
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case we use the identity link and so the exact-design Fisher information

matrix is proportional to VTV, here the corresponding Fisher information

matrix is of the form VTWV since we are using the logit link. As

shown in Atkinson et al. (2007), W is a diagonal matrix with typical

diagonal element equal to � (1� �) for � given in equation (10) for the

Binary LL2 model and in equation (11) for the Binary LOG2 model. Thus,

geometric and uniform designs are chosen in the Binary case considered here

to maximize the determinant of VTWV. Important references wherein

minimal-support optimal designs are provided and studied in this setting are

provided in Atkinson et al. (2007); our focus here is on geometric and uniform

designs.

Second, for the Binary LL2 model with success probability given in

equation (10), the values of t in the D-optimal design solve the equation

(1 + t) + (1� t) log (t) = 0: (13)

This expression is analogous to Equation (8) which applies to the LL2 model

in the Gaussian case; the reciprocal values that solve equation (13) are

t1 = 0:213652 and t2 = 4:680499, and are such that the expected proportions

are �1 = 0:823959 and �2 = 0:176041 and again the D-optimal design

support points are such that the expected responses are symmetric around 1
2 .

However, in contrast with the expected responses in the Gaussian LL2 setting

(viz, �1 = 0:739549 and �2 = 0:260451), note that here the D-optimal

design points have shifted so that the expected responses are further away from

the centre (� = 1
2 ). This is indeed reasonable since for this Binary model the

variability, which is proportional to �(1��), decreases as we move away from
� = 1

2 ; the variability in the Gaussian case, on the other hand, is assumed to

be constant (�2) over the range of the curve.
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These differences notwithstanding, our approach to �nding optimal

geometric (for the LL2 model) and optimal uniform (for the LOG2 model)

designs in the Binary Logistic case is analogous to the Gaussian case given in

the last section, but with different values of m. These new m values and the

D-ef�ciencies are given in Table 2 for the corresponding choices ofK.

Table 2 Optimal values ofm and D-ef�ciencies (D-EFF) for various choices
of K for the Binary LL2 and LOG2 models. Values of m and K are then
used to obtain values of a and b or A and B to be used to obtain experimental
designs

K 1 2 3 4 5 6
m 21.9071 6.3606 4.0053 3.0099 2.4966 2.1868
D-EFF (%) 100.0 92.94 92.45 92.15 91.99 91.90

K 7 8 9 10 11 19
m 1.9811 1.8350 1.7262 1.6422 1.5754 1.3130
D-EFF (%) 91.85 91.81 91.78 91.76 91.74 91.69

The values of a and b are then again obtained using Equation (7) for the

Binary LL2 model, and the values of A and B are obtained using Equation (9)

for the Binary LOG2 model. Similarly, the values of t and u are again given

by the relations t = mr for the LL2 model and u = mr for the LOG2 model

with the powers r = �K=2; � (K � 2)=2; � (K � 4)=2; : : : ; (K � 2)=2
and K=2.

To illustrate, consider again Example 5 discussed in the last section but now

with the assumed distribution being the Binomial one. In this case, the optimal

value ofm is 2:1868 and since the D-ef�ciency is 91.90% the information loss

here is only 8.1%. When the Binary LL2 model in equation (10) is assumed,

we obtain a = 1:5442 and b = 1:4788; when the Binary LOG2 model in

equation (11) is used, the relevant values are A = 0:3053 and B = 1:5649.

To compare these results and the corresponding values of t for the LL2 model
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and u for the LOG2 model with the Gaussian case, these values are listed in

Table 3. This table again shows that the design points become more dispersed

for the Binomial distribution when compared with the Gaussian case.

Table 3 Optimal values for Example 5 under Gaussian and Binomial settings
for LL2 model function (with �2 = 5; �3 = 2) and the LOG2 model function
(with �2 = 5; �3 = 0:5)

Distribution m D-eff. LL2 LOG2 t or u
values values (expected responses)

Gaussian 1.6698 90.74% a = 2:317 A = 1:924 0:2148 (0:8232)
b = 1:292 B = 1:025 0:3586 (0:7360)

0:5989 (0:6254)
1:0000 (0:5000)
1:6698 (0:3746)
2:7883 (0:2640)
4:6560 (0:1768)

Binomial 2.1868 91.90% a = 1:544 A = 0:305 0:0956 (0:9127)
b = 1:479 B = 1:565 0:2091 (0:8271)

0:4573 (0:6862)
1:0000 (0:5000)
2:1868 (0:3138)
4:7821 (0:1729)
10:4576 (0:0873)

Finally, in order to highlight the impact on the �nal design support points

for this example, these support points are given under the four settings

considered here and above in the �rst four rows of Table 4. Note that the

�rst and third designs are geometric and the second and fourth are uniform,

and each contains the LD50 as a support point (this occurs only when K is

even).
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Table 4 Optimal design support points for Example 5(K = 6) under
Gaussian and Binomial settings for LL2 and LOG2 model functions. Starred
designs (8 and 9) use the second-order volume criterion with � = 0:25 (see
text)

Design Model (chosen parameter values) Design support points (x)
1 Gaussian LL2 (�2=5, �3=2) 2.32 2.99 3.87 5.00 6.46 8.35 10.79
2 Gaussian LOG2 (�2=5, �3=0.5) 1.92 2.95 3.98 5.00 6.03 7.05 8.08
3 Binary LL2 (�2=5, �3=2) 1.55 2.29 3.38 5.00 7.39 10.93 16.17
4 Binary LOG2 (�2=5, �3=0.5) 0.31 1.87 3.44 5.00 6.57 8.13 9.70
5 Gaussian LL2 (�-robust) 1.75 2.36 3.18 4.29 5.78 7.80 10.51
6 Gaussian SL3 
!0(�2=5, �3=2) 1.50 2.24 3.35 5.00 7.47 11.17 16.69
7 Binary SL3 
!0(�2=5, �3=2) 0.67 1.31 2.56 5.00 9.77 19.07 37.25
8 Gaussian LL2 (�2=5, �3=2)� 2.93 3.65 4.55 5.66 7.05 8.78 10.93
9 Gaussian LOG2 (�2=5, �3=0.5)� 2.39 3.30 4.20 5.11 6.01 6.92 7.82

Note too that the given parameter values were chosen since the

corresponding curves are very similar (see Figure 1). We return to the issue of

wrongly specifying the a priori estimates of the parameter values in the next

section. We also address there the issue of whether the LL2 or the LOG2model

should be chosen, and how to choose robust designs where there is uncertainty

as to which is the better choice. Before doing so, we again underscore the

over-riding point: using Tables 1 and 2, geometric and uniform designs can

easily be chosen so that the information loss is modest (i.e. less than 10%), yet

these designs provide us with the important ability to test model goodness of

�t.

6. Further robustness concerns
Ef�cient geometric and uniform designs are very useful since they are often

practical to implement and since they allow for a check of model �t. However,

the methods to obtain these designs given above hinge upon several crucial

assumptions or requirements including: (a) the parameter values be known

with certainty, (b) the scale in our Logistic model be known (so we can
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choose either the LL2 or the LOG2 model function) with certainty, and (c)

the �rst-order variance estimate is acceptable and therefore D-optimality is

the appropriate design criterion. We address each of these issues in turn

and modify the above rules-of-thumb accordingly in situations where these

conditions are not met.

6.1 Incorporating uncertainty of model parameters
As noted in Section 2, choosing an optimal design for a nonlinear model is

often complicated by the fact that one must �rst have an accurate idea of the

values of the model parameters before the design can be obtained; indeed,

a `point estimate' of the parameter vector is used above in the information

matrix in order to generate the local optimal designs. Some authors have thus

taken a Bayesian approach wherein a prior distribution is substituted in place

of this parameter vector choice and designs are obtained to maximize expected

information instead; details can be found in Chaloner and Larntz (1989) and

Atkinson et al. (2007). We use a similar approach here � the so-called maxi-

min approach � so as to modify the methods given in the previous sections to

obtain geometric and uniform designs and to address situations in which there

is uncertainty in the values of the model parameters; references for the maxi-

min design methodology are given in Atkinson et al. (2007). Our �ndings and

conclusions are well appreciated in the context of the following illustration.

Example 6 In the context of the homoskedastic Gaussian LL2 model given

in equation (2), we consider here the performance of the optimal geometric

design for K = 4 using the initial parameter estimates �2 = 5 and �3 = 2.

Thus, from Table 1, we obtain m = 2:0598 and by calculation a = 2:4274

and b = 1:4352. This model function is graphed in each of the panels

of Figure 2 (solid curve) as are the optimal geometric design support points
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(�lled circles) � obtained by intersecting the LL2 function with the cut-lines

� = 0:81; 0:67; 0:50; 0:33; 0:19 (horizontal dotted lines).
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Figure 2 Graphs of LL2 model function for �2 = 5 and �3 = 2 (solid curve)
and other parameter choices given at top of individual panels. Filled circles
correspond to optimal geometric design points for K = 4; �2 = 5; �3 = 2
case. Filled squares correspond to optimal geometric design points and open
circles to D-optimal design points for indicated parameter values in respective
graphs. Dotted horizontal lines indicate how optimal geometric designs are
obtained by intersection with the respective LL2 curves (both solid and dashed
curves)
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We next consider in turn subtracting and adding a 50% adjustment to each

of the initial parameter values, so the additional LL2 functions plotted in this

Figure (dashed curves) correspond to �2 = 5 and �3 = 1 (top left panel),

�2 = 5 and �3 = 3 (top right), �2 = 2:5 and �3 = 2 (bottom left),

and �2 = 7:5 and �3 = 2 (bottom right). Also plotted in each of

these panels are the optimal geometric design points (solid squares) and the

two-point D-optimal design points (open circles) for the respective parameter

choices given at the top of each of the four panels. The reported D-ef�ciency

values in each panel correspond to the comparison of the optimal geometric

design for the choice �2 = 5 and �3 = 2 with the actual two-point D-optimal

design for the parameter choices in the respective cases. It is indeed striking

how the D-optimal design support points change for the various parameter

choices. It is also striking that the D-ef�ciencies of the original optimal

geometric design range between 45.45% and 91.03% over the grid of values

(2:5 � �2 � 7:5)� (1 � �3 � 3).�
Since the D-ef�ciency of the original geometric design can be quite low

(e.g. as low as 45% in the previous example), we now seek another practical

manner of �nding optimal geometric designs in situations where there is

uncertainty about the model parameters. Speci�cally, based on the LL2 model

function graphs given in the top panels of Figure 1, we take a discretized

uniform prior over the grid of parameter values, (2:5 � �2 � 7:5) �
(1 � �3 � 3). For computational purposes, in our analysis this grid comprised
441 points with �2 ranging from 2:5 to 7:5 by steps of 0:25 and �3 taken

from 1 to 3 by steps of 0.10. Using the above Example 6 as a starting point, we

then searched for ef�cient geometric designs so that the worst case D-ef�ciency

over this grid was as high as possible � that is, we searched for a `maxi-min'

geometric design. Speci�cally, we sought to �nd geometric designs for various
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choices of K by choosing the a and b to maximize the minimum D-ef�ciency

over this uniform grid of parameter values. For each choice ofK andm from

Table 1 and the maxi-min values of a and b, we then sought the corresponding

values of �2 and �3 from equation (7). Our empirical results for numerous

choices of K have led us to deduce the following re�nement of our rule of

thumb given in section 2 for optimal geometric designs for the Gaussian LL2

model when uncertainty exists about the initial parameter values of the manner

examined here:

The 6/7 Rule: In the calculation of a and b in Equation (7),
� ��2 = (6=7)

�
�2 should be used in place of �2; and

� ��3 = (6=7)
�
�3 should be used in place of �3

Thus, for example for the set up in Example 6 with K = 4 and uniform

initial parameter estimates over the above uniform grid, we now use �2� =
4:286 and ��3 = 1:714, and we obtain m = 2:0598, a = 1:8446, b = 1:5243.

In this case, the `�-robust' geometric design support points are x = 1:8446,

2:8116, 4:2857, 6:5326, and 9:9575. For purposes of comparison, the `local'

geometric design support points are x = 2:4274; 3:4838; 5:00; 7:1760 and

10:2989 when the initial parameter estimates are assumed known precisely

(i.e. �2 = 5 and �3 = 2). In both cases, the (reciprocal) t values are

t = 0:2357; 0:4855; 1:00; 2:0597 and 4:2427; with expected responses

� = 0:8093; 0:6732; 0:5000; 0:3268 and 0:1907; the different design

support points given here result from the different parameter choices in the

calculations using the relation x = �2t
1=�3 . Most notably, whereas the

minimum D-ef�ciency of the local geometric design over the uniform grid is

45.45%, this minimum value increases to 59.68% for the �-robust geometric

design. In addition, the D-ef�ciency at the centre point (�2 = 5; �3 = 2)

drops from 91.03% for the local design to just 87.99% for the �-robust
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geometric design. We are thus led to prefer the �-robust geometric design

obtained using the �6/7 Rule� when parameter uncertainty exists of the nature

described here.

Our �ndings also show that the above results carry over to ef�cient

uniform designs for the LOG2 model and to situations involving the Binomial

distribution instead of the constant-variance Gaussian distribution. The �6/7

Rule� also applies for the other values of K given in Tables 1 and 2; the

support points for the Gaussian LL2 model in Example 5 (K = 6), given

in the �fth row of Table 4, show the same downward shift as in the above

example with K = 4. Of course, it is important to point out that this rule

has been developed using the (2:5 � �2 � 7:5)� (1 � �3 � 3) uniform grid;
quite expectedly, as this grid is shrunken closer and closer to the central point

�2 = 5 and �3 = 2, the �6/7� fraction approaches one. Further, instead

of using the `maxi-min' approach in which we have sought geometric designs

which maximize the minimum D-ef�ciency over a given prior distribution of

the parameter values, we could have easily chosen some other measure such

as the average D-ef�ciency over the region. Clearly, the speci�c choice of the

parameter-robust design criterion as well as the prior distribution of parameter

values will need to be determined on an ad hoc basis and attempts to address

each speci�c contingency is not possible in general.

Our point here is to demonstrate that with only minor modi�cation, our

above methodology for �nding ef�cient geometric and uniform designs is

easily extended to cover various patterns of uncertainty of the initial parameter

values. Also, given the graphs in Figure 1, the grid of parameter values used

here are indeed reasonable in many realistic situations, and so the �6/7 rule�

recommended and implemented here is of important practical consequence.
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6.2 Incorporating uncertainty regarding the appropriate
scale
As pointed out in Section 2 and examples contained therein, researchers are

sometimes unsure as to whether the Logistic model should be �tted on the

original scale or the log-scale. This uncertainty is easily incorporated into

the above geometric/uniform design methodology. Speci�cally, we consider

here settings in which a researcher feels that either the Gaussian or Binary LL2

model function in Equations (2) or (10) is appropriate but is not completely

certain that the log-scale is correct. Noting that the LL2 model function is

equivalent to the scaled Logistic (SL3) model with 
 approximately zero,

our goal here is to seek ef�cient geometric designs for the SL3 model taking


 ! 0. This approach is similar to the nesting strategies examined in O'Brien

(1994) and O'Brien (1996) but here we consider only geometric designs. Our

�ndings here are indeed analogous to those given in Sections 4 and 5.

In the case of the Gaussian LL2 model but with some uncertainty as to the

proper scale � that is, for the Gaussian SL3 (
 ! 0) model so v in Equation

(5) approaches t in Equation (2) � ef�cient (K + 1)-point geometric designs

of the form x = a; a�b; a�b2:; ::; a�bK are obtained by �rst choosing the

valuem from the following table.

Table 5 Optimal values ofm and D-ef�ciencies (D-EFF) for various choices
of K for the Gaussian SL3 model with 
 ! 0: Values of m and K are then
used to obtain values of a and b or A and B to be used to obtain experimental
designs

K 2 3 4 5 6 7
m 7.2453 4.0495 3.1117 2.5589 2.2331 2.0172
D-EFF (%) 100.0 93.37 93.46 93.17 93.03 92.94

K 8 9 10 11 12 19
m 1.8645 1.7510 1.6635 1.5941 1.5377 1.3222
D-EFF (%) 92.88 92.84 92.81 92.78 92.77 92.71
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As above, we then again use the value of m and Equation (7) to �nd the

optimal values of a and b and thus the design support points.

When we choose K = 2, the local D-optimal design has three support

points. Interestingly, these D-optimal support points are such that t2 = 1 (so

that x2 = �2), and the reciprocal values t1 and t3 = 1=t1 solve the equation

(1 + t) + 2
3 (1� t) log (t) = 0: (14)

This equation, which is the Gaussian SL3 (
 ! 0) model analogue of

equation (8) for the Gaussian LL2 and LOG2 models, has solutions t1 =

0:138020 and t3 = 7:245338. Thus, the local D-optimal design again has t

values and expected response values (� = 0:8787; 1
2 ; 0:1213) that do not

depend on the initial parameter estimates, and again �1 and �3 are again

symmetric around � = 1
2 .

In comparing equations (8) and (13), it is not surprising that for the Binary

SL3 (
 ! 0) model, in addition to t2 = 1, the reciprocal values t1 and

t3 = 1=t1 solve the equation

(1 + t) + 1
3 (1� t) log (t) = 0 (15)

and are thus t1 = 0:039022 and t3 = 25:626771. With the expected

proportions here of � = 0:9624; 1
2 ; 0:0376; we again see the expected

responses moving away from the centre (� = 1
2 ) in the Binomial case when

compared with the Gaussian case. In the case of the Binary SL3 (
 ! 0)

model, ef�cient (K+1)-point geometric designs are obtained by choosing the

value m from the Table 6 and again using Equation (7) to calculate the values

of a and b and whence to obtain the design support points.
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Table 6 Optimal values ofm and D-ef�ciencies (D-EFF) for various choices
ofK for the Binary SL3 model with 
 ! 0. Values ofm andK are then used
to obtain values of a and b to be used to obtain experimental designs

K 2 3 4 5 6 7
m 25.627 9.9635 6.7177 4.7724 3.8145 3.2185
D-EFF (%) 100.0 93.09 94.22 93.80 93.74 93.67

K 8 9 10 11 12 19
m 2.8230 2.5426 2.3345 2.1744 2.0477 1.5924
D-EFF (%) 93.63 93.61 93.59 93.57 93.56 93.52

To illustrate these methods, consider again the setup in Example 5 where

we desire an ef�cient 7-point geometric design (K = 6) but now

for the Gaussian SL3 (
 ! 0) model; that is, we now envisage a

situation in which the Gaussian LL2 model �ts our data but are uncertain

as to the assumed log-dose scale. In this case, from Table 5, we obtain

m = 2:2331, a = 1:4984 and b = 1:4943. Here, the optimal

values of t are t = 0:0898; 0:2005; 0:4478; 1:00; 2:2331; 4:9866,

and 11:1356, and the optimal expected responses are � =

0:9176; 0:8330; 0:6907; 1
2 ; 0:3093; 0:1670, and 0:0824. Thus, again t1

and t7 are reciprocals and so on, and the corresponding expected responses

sum to one. The geometric design points for the SL3 (
 ! 0) model for

the Gaussian and Binomial cases are given as designs 6 and 7 in Table 4; in

comparing these designs with the respective LL2 model counterparts (designs

1 and 3 in the same table), we see how uncertainty of the scale increases the

dispersion of the design support points.

Thus again with only minor modi�cation, the methods given here provide

researchers with the means to obtain ef�cient geometric designs for the

Gaussian and Binary LL2 model when some uncertainty exists as to the

assumed log-dose scale.
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6.3 Second-order design criterion
D-optimal designs for Gaussian nonlinear models may ignore important

second-order `curvature' terms. As a result, Hamilton and Watts (1985)

proposed a design criterion based on a second-order volume approximation

related to the generalized variance. This design criterion, herein called Q-

optimality, requires parameter estimates for the model parameters (�) as well

as for �; details of the criterion are given in Hamilton and Watts (1985) and

an extension is given in O'Brien (1992). Here, we extend the rules of thumb

given above in Section 4 for obtaining ef�cient D-optimal geometric designs

for the Gaussian LL2 model and uniform designs for the LOG2 model so as to

incorporate the Q-optimality design criterion.

For the Q-optimality criterion, as � gets nearer and nearer to zero, Q-

optimal designs approach the corresponding D-optimal design. It follows that

the values ofm given in Table 1 correspond to the Q-optimal case with � = 0.

As noted in Section 4, for the D-criteria considered above, the values ofm (and

thus of t, u, and �) do not depend upon the initial parameter estimates (�).

This is no longer the case for the Q-optimality criterion with � 6= 0. Thus, we
direct our search here for the optimal values a and b for geometric designs and

A and B for uniform designs. The following table provides these values for up

to 7-point designs for the local LL2 and LOG2 models and parameter values

considered above.



76 O'BRIEN, CHOOPRATEEP & HOMKHAM

Table 7 Optimal values of a and b for the Gaussian LL2 model and of A and
B for the Gaussian LOG2 model obtained using the Q-optimal design criterion

LL2(�2 = 5; �3 = 2) model LOG2(�2 = 5; �3 = 0:50) model
K � = 0 � = 0:10 � = 0:25 � = 0 � = 0:10 � = 0:25
1 a = 2:967 a = 3:208 a = 3:406 A = 2:913 A = 3:013 A = 3:092

b = 2:840 b = 2:643 b = 2:485 B = 4:175 B = 3:975 B = 3:817
2 a = 2:711 a = 2:781 a = 3:083 A = 2:551 A = 2:341 A = 2:429

b = 1:845 b = 1:770 b = 1:676 B = 2:449 B = 2:343 B = 2:230
3 a = 2:527 a = 2:719 a = 3:022 A = 2:270 A = 2:529 A = 2:598

b = 1:576 b = 1:553 b = 1:492 B = 1:820 B = 1:784 B = 1:731
4 a = 2:427 a = 2:771 a = 3:118 A = 2:110 A = 2:450 A = 2:660

b = 1:435 b = 1:404 b = 1:363 B = 1:445 B = 1:371 B = 1:283
5 a = 2:363 a = 2:661 a = 3:024 A = 2:002 A = 2:300 A = 2:524

b = 1:350 b = 1:324 b = 1:292 B = 1:199 B = 1:134 B = 1:057
6 a = 2:317 a = 2:565 a = 2:934 A = 1:924 A = 2:165 A = 2:393

b = 1:292 b = 1:273 b = 1:245 B = 1:025 B = 0:973 B = 0:905

For these models, � = 0:25 corresponds to a rather high value since for

the model considered here it corresponds to a coef�cient of variation of 25%

at the highest expected response. Thus we note that as � increases, both

geometric and uniform designs are shifted to the right and the range of the

design support points is reduced. The corresponding Q-optimal design points

for the K = 6 scenario considered in Example 5 are given in Table 4 (designs

8 and 9) to facilitate comparisons with the other designs considered above;

indeed the `centre' of the geometric design is shifted from 5.00 to 5.66 and the

range drops from 8.47 to 8.00.
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7. Discussion
Noteworthy algebraic results related to optimal design points for the Gaussian

and Binary LL2, LOG2 and SL3 (
 ! 0) models are given in Equations

(8), (13), (14) and (15), and these results are useful in helping practitioners

�nd local D-optimal designs for these models. These results notwithstanding,

the key results given in this paper provide researchers with the means to

choose `robust' experimental designs that are both highly ef�cient and easy

to implement. As underscored in Govaerts (1996), optimal designs with only

p support points are rarely or never used in practice as they cannot be used to

test lack of �t of the assumed model. On the other hand, the geometric and

uniform designs provided by our methodologies are both easy to implement

and very useful to test for any potential model inadequacies. In light of the

often appropriate adage that `all models are wrong some models are useful'

(Box, 1979), these characteristics are indeed notable and paramount.

Inherent in our above rules of thumb is the requirement that the logistic

class is the appropriate one. Clearly, the log-logistic and logistic model

functions are very popular in applied research (see references given in Sections

2 and 3 above as well as Seber and Wild, 1989, and Ratkowsky, 1983, 1990)

perhaps due to the ease of interpreting the parameter values. Indeed even the

Michaelis-Menten model examined in Dette et al. (2005) is simply a special

case of the LL3 model considered here. As pointed out above, interpreting the

model parameters in the Weibull and Richards model functions considered in

Dette and Pepelyshev (2008) is not nearly as clear-cut.

Inherent in the use of geometric and uniform designs with `extra' support

points is the reasonable contention that these robust designs can be used to

test for mis-speci�cation � of the model function, of the chosen scale for the

independent variable, or of the initial parameter estimates. Although we have
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directly considered the latter two concerns here, we have not addressed the

issue of wrongly choosing the model function. This is a relatively simple task

in the case of linear models; see Dette (1993), Pukelsheim and Rosenberger

(1993), Zen and Tsai (2004), and Bischoff and Miller (2006). This is not

the case for nonlinear models, and one reasonable approach is the nesting

approach introduced and applied in Atkinson (1972) and O'Brien (1994, 1996).

Atkinson (1972) shows that the nesting criterion is related to the power of the

lack-of-�t test. Indeed, current research is ongoing related to geometric and

uniform designs related to model nesting for nonlinear sigmoidal models; as

this is outside the realm of the current research it is not discussed further here.

As noted in Section 3, geometric designs are used extensively in

applications. Left to their own means, and based on the examples given in

Section 3, practitioners choose values of b (reciprocal dilution values) as low

as 1.45, although integer values of 2, 3, 5 and 10 are more common. Clearly

one of the potential problems with choosing a value as large as b = 5 � and

one we have unfortunately witnessed in our own consulting sessions � is that

the subsequent values of the response variable are then seen to be near the

maximum value for low values of x (e.g. for x = 5 and x = 25) and near

the minimum value for large values of x (e.g. for x = 125 and x = 625).

In these situations, only the upper and lower asymptotes in Equation (4) can

be estimated, and the model cannot be �tted to the data since no information

can be gleaned relating to either the LD50 or slope parameters. Thus,

at a minimum, our methods given here provide researchers with reasonable

benchmarks for their dilution factors obtained using either Table 1 or 2. At

the other end of the spectrum, practitioners concerned with uncertainty of the
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initial parameter values, the appropriate scale, and ignoring curvature should

follow the suggestions given above in Section 6.
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