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This article demonstrates and underscores the equivalence be-
tween a variance-maximization exercise and the methodology
involved in obtaining and verifying the optimal design for a key
model function. It thus provides an alternate solution to the vari-
ance exercise as well as a means to introduce and illustrate the
concepts of optimal design theory and practice in a simple and
clear manner.
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1. INTRODUCTION

With only rare exception, instructors of experimental design
and other courses in academic and industrial settings typically
avoid addressing issues of optimal experimental design possibly
due to the complexityof some of the material and publicationsin
this � eld. This theory was developedby Smith (1918), Chernoff
(1953), Kiefer (1959, 1961, 1974, 1975), Kiefer and Wolfowitz
(1960), White (1973), and Dette and O’Brien (1999), and was
discussed by Silvey (1980), Atkinson and Donev (1992), and
Pukelsheim (1993). Thus, although this rich literature exists for
optimal design theory, it is only rarely encountered by under-
graduate and graduate students of statistics in their coursework.
In the applied spirit of Brady and Allen (2002), because re-
searchers are often very interested in obtainingef� cient designs
in practice, we feel that students should be exposed to their use-
fulness.

One reason instructors may � nd optimal design theory to be
a dif� cult topic to cover in a course is that its methodology
does not easily build on established results, and thus requires a
good deal of preliminary de� nitions and results before mean-
ingful applications can be made. This article shows how results
from optimal design theory can be easily introduced and used
to solve an interesting exercise from basic statistical theory, and
thus also serves to bridge this gap in their coursework. We have
had surprising success and positive feedback in distributing and
discussing earlier versions of this note to students enrolled in
undergraduate and graduate statistical theory and experimental
design courses and in devoting roughly one or two class periods
covering its contents.

2. A FAMILIAR STARTING POINT

Consider the following exercise encountered by students en-
rolled in a post-calculusundergraduatecourse in basic statistical
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theory (see, e.g., DeGroot and Schervish 2002, p. 236, exer-
cise 14). The discrete random variable X has probability mass
function (pmf) !(x) which takes the value zero outside of the
unit interval, [0; 1], and the exercise is to � nd the pmf which
maximizes the variance. Hence, we seek the (at most count-
ably in� nite) points x1; x2; : : : ; xk and corresponding weights
!1; !2; : : : ; !k , with !j = !(xj), which maximize the criterion
function

CF =
kX

j = 1

!j (xj ¡ · )2 ;

where the mean · =
P

!jxj .
Students of elementary statistical theory, using algebraic re-

sults and properties of variances, can show that the optimal mass
function places mass ! = 1=2 at each of the points x1 = 0 and
x2 = 1. However, it turns out that this rather simple exercise
also provides an excellent example useful to introduce and il-
lustrate optimal design theory and methods, thereby giving an
alternative proof of the above result and a means to demonstrate
uniqueness and optimality of this solution.

3. A BASIC INTRODUCTION TO OPTIMAL DESIGN
THEORY

This section brie� y reviews basic optimal design theory for
regression models; readers interested in more extensive devel-
opments are referred to Silvey (1980), Box and Draper (1987,
chap. 14), Seber and Wild (1989, sec. 5.13), and Atkinson and
Donev (1992). For a given linear or nonlinear regression model
function, E(Y ) = ² (x; µ) with unknown p £ 1 parameter vec-
tor µ; the optimal design problem typically involves choosing
a design with k design points, ¹ , to best estimate the parameter
vector. Here ¹ can be written as

¹ =

½
x1; x2; : : : ; xk

!1; !2; : : : ; !k

¾
;

where the k design support pointsx1; x2; : : : ; xk are elementsof
the design space ¢, and the associated weights !1, !2; : : : ; !k

are nonnegative real numbers which sum to one. For the design
¹ , the k £ p Jacobian matrix, V = @´=@µ with stth element
@´(xs)=@µt, dependson µ for nonlinearmodelsand doesnot for
linear models. When the model errors are normally distributed,
the corresponding (Fisher) information matrix associated with
µ is given by

M = M( ¹ ; µ) =

kX

j = 1

!j
@´(xj)

@µ

@´(xj)

@µT
= VT «««V;

where ««« = diagf!1; !2; : : : ; !kg.
Because the asymptotic covariance matrix associated with

the maximum likelihood estimate of µ is proportional to M¡1,
variance-optimal designs minimize some convex function of
M¡1. The most popular regression design criterion is D-
optimality (Silvey 1980, p. 40), where designs are sought to
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minimize the determinant of M¡1 (or equivalently, to maxi-
mize the determinant of M). Reasons for the popularity of this
criterion were given by Seber and Wild (1989, p. 250) and in-
clude the fact that D-optimal designs are invariant to an (even
nonlinear) reparameterization of the model function. The proof
of this invarianceinvolvesan argument identical to the one given
in the proof of Theorem 1 in Dette and O’Brien (1999, p. 97).
Further, as discussed by Atkinson and Donev (1992, p. 44), the
standardized (predicted) variance function which corresponds
to the assumed model function and design is given by

d(x; ¹ ; µ) =
@² (x)

@µT
M¡1(»; µ)

@² (x)

@µ
;

and designs thatminimize ¯ ( ¹ ,µ) = maxx 2 ¢ d(x; ¹ ; µ) are called
G-optimal.

The celebrated general equivalence theorem [originallygiven
in Kiefer and Wolfowitz (1960) for linear models and extended
to nonlinearmodels in White (1973)] establishes the equivalence
of ¹ D and ¹ G, the D- and G-optimal designs. Equally important
is a corollary which states that ¯ (¹ D,µ) = p, that is, that the
maximum predicted variance for the D-optimal design is p. An
important application of this corollary is to graphically check
the D-optimality of ¹ D because ¯ (¹ ,µ) > p for all other (non
D-optimal) designs, ¹ . A further result is that d(x; ¹ D,µ) = p for
x equal to each of the support points of ¹ D . These somewhat ob-
scure conceptsare illustratedwith the followingcarefully chosen
example, which is useful both to illustrate concepts of optimal
design and to provide an alternate proof of the variance maxi-
mization exercise.

4. A KEY APPLICATION

For the simple linear regression model ² (x; µ) = fT (x)µ =
¬ +  x de� ned over the interval ¢ = [0; 1], it is straightfor-
ward to show that the corresponding D-optimal design, ¹ D, as-
sociates the weight ! = 1=2 with each of the points x1 = 0
and x2 = 1 and is such that

¯̄
M¡1 ( ¹ D)

¯̄
= 4; related re-

sults were given by Atkinson and Donev (1992, p. 38 ff). In-
deed, the choice of this design to � t this (linear) model function
makes intuitive sense because the parameters can clearly be best
(jointly) estimated with design points with the greatest spread.
As mentioned in the previous section, D-optimality of this de-

Figure 1. Plot of the variance functions associated with the D-optimal
design (solid curve) and a rival design (dashed curve) and the line y = 2.

sign is easily veri� ed by examining the corresponding variance
function. To illustrate, a plot of this predicted variance function,
d(x; ¹ D; µ) = 2

¡
1 ¡ 2x + 2x2

¢
= 4 (x ¡ 1=2)

2
+ 1, given in

Figure 1, veri� es D-optimality of ¹ D since the corresponding
graph does not exceed the line y = p = 2 over the interval
¢. Further, the fact that d(x; ¹ D; µ) = 2 at the support points
(x = 0 and 1) of ¹ D also establishes uniqueness of this design.
Finally, we can use these results to show that a rival design is
not D-optimal. Demonstrating that the rival design ( ¹ R) that as-
sociates the weight ! = 1=3 with each of the support points
x1 = 0; x2 = 1=2 and x3 = 1 is indeed not D-optimal for this
model function and design space is established by noting both
that

¯̄
M¡1 ( ¹ R)

¯̄
= 6 > 4 and by observing that a plot of the

correspondingvariance functiond(x; ¹ R; µ) = 6 (x ¡ 1=2)
2
+1

crosses above the line y = 2 for several x 2 ¢; this too is shown
in Figure 1.

Next, consider the same linear model function reparameter-
ized as ² 2(x; µ2) = ® (x ¡ ¯ ) again de� ned over the same de-
sign space ¢ = [0; 1]. For an arbitrary design ¹ , the correspond-
ing information matrix is

M ( ¹ ) =

"
® 2 ¡ ®

Pk
j = 1 !j (xj ¡ ¯ )

¡ ®
Pk

j = 1 !j (xj ¡ ¯ )
Pk

j = 1 !j (xj ¡ ¯ )
2

#
;

and the D-optimal design therefore maximizes

jM ( ¹ )j = ® 2

2

64
kX

j = 1

!j (xj ¡ ¯ )2 ¡

8
<

:

kX

j = 1

!j (xj ¡ ¯ )

9
=

;

2
3

75 :

By the invariance property of D-optimal designs, this determi-
nant is also maximized by the equal-weight design with support
points x1 = 0 and x2 = 1. Also, again by the invariance
property, because this design does not depend on the choice of
the model parameters, we choose ® = 1 and ¯ = · , so that this
same two-point design also maximizes the determinant

jM ( ¹ )j =

kX

j = 1

!j (xj ¡ · )
2

:

Note that this determinant is identical to the variance criterion
function given in Section 2 since

Pk
j = 1 !j (xj ¡ · ) = 0. It

therefore follows that results from optimal design theory pro-
vide an alternate proof that this variance is maximized for the
equal-weight design with support points x1 = 0 and x2 = 1,
and the plot of the correspondingvariance function indeed veri-
� es both optimality and uniqueness. More importantly, this ex-
ercise also provides a means to introduce students to the basic
concepts encountered in optimal design theory which are useful
for selectinggood designs for all linear and nonlinear regression
models.

5. AN EXTENSION

Upon being exposed to this example, some students hasten
to point out that although the designs considered above have
continuous (i.e., possibly nonrational) weights, they have a dis-
crete (countable) set of design support points, and wonder if
a larger value of the determinant of the information matrix
M( ¹ ; µ) =

R
(@´(x)=@µ)(@´(x)=@µT )d¹ (x) can be achieved
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by considering the space of probability measures (i.e., den-
sity functions), ¥ =

©
¹ (x) s:t:

R
d¹ (x) = 1 for x 2 ¢

ª
: This

larger class of design measures is addressed in Kiefer (1974),
and for simplicity we consider here only the Beta class of prob-
ability distribution functions.

Let the random variable in Section 2 have the probability
distribution function

! = ¹ (x) =
¡ ( ¬ +  )

¡ ( ¬ )¡ ( )
x ¬ ¡1(1 ¡ x) ¡1

for ¬ ;  > 0 and x 2 ¢ = [0; 1]. Then by basic calculus, the
corresponding variance,

¼ 2 =
¬ 

( ¬ +  )2( ¬ +  + 1)

is maximized for ¬ =  as ¬ ;  ! 0, and for which the maximal
variance is 1=4. It comes as no surprise that as ¬ ;  ! 0, the
beta density function approaches one with equal mass at the
support points x1 = 0 and x2 = 1. It therefore follows that
by the equivalence established in the previous section that this
two-point discrete design is also optimal over the space of Beta
design measures. Interested students can � nd additional results
on optimal design measures in Pukelsheim (1993).

6. DISCUSSION

This article uses the simple exercise of maximizinga variance
over a class of probability mass functions to gently expose be-
ginning students to some important concepts of optimal design
theory, a topic perhaps encountered only in courses in advanced
experimental design. In so doing, students easily appreciate the
power and aesthetics associated with this rich theory, and are

thereby equiped to continue their study of optimal design theory
and practice.

[Received November 2002. Revised July 2003.]
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