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A note on quadratic designs for nonlinear regression models

By TIMOTHY E. O’BRIEN
Department of Statistics, North Carolina State University, Raleigh, North Carolina 27695, U.S.A.

SUMMARY

Hamilton & Watts (1985) state that their quadratic design criterion results in designs with only
p points of support. In this note we demonstrate how their design criterion may be used to obtain
designs with p + 1 design points, thus allowing for a check of the adequacy of the assumed model.

Some key words: Intrinsic nonlinearity; Model misspecification; Nonlinear regression; Optimal design;
Parameter-effects nonlinearity.

1. INTRODUCTION

The first real advance in nonlinear design methodology was given by Box & Lucas (1959) with
the introduction of a local D-optimal design criterion. Local D-optimal designs minimize the
volume of the linear approximation to the exact confidence region for 6, typically at some initial
estimate, 6. Demonstrating that this first-order approximation can often be quite poor, Hamilton
& Watts (1985) introduce a second-order volume approximation. Whereas D-optimal designs
work with a tangent plane approximation, quadratic designs have the distinct advantage of taking
into account the curvature of the expectation surface.

Although Atkinson (1988) and Chaloner & Larntz (1989) give examples of Bayesian D-optimal
designs with more than p support points, Atkinson & Hunter (1968), M. J. Box (1968) and Vila
(1991) give evidence that in most practical situations non-Bayesian D-optimal designs typically
result in replicates of only p support points. Further, Hamilton & Watts state that their quadratic
criterion also results in replicates of only p points regardless of the value of n. A major disadvantage
of designs with only p support points is that these designs provide no ability to check for lack
of fit of the hypothesized model, a concern raised by Box & Lucas (1959) and Cochran (1973).

The purpose of this note is to demonstrate how the quadratic design criterion of Hamilton &
Watts may be used to obtain optimal designs with p+1 support points. An example is given to
illustrate this technique.

2. BACKGROUND

For the expectation function, E(y) =7(6), where 0 is a p X1 parameter vector, V and W are
the first and second derivative arrays of n with respect to 6 evaluated at 0 havmg dlmensmns
nxpand nXpXp, respectively. Also, ¥ has the QR decomposition V= QR [U | N ]R UL'
where the columns of U form an orthonormal basis for the tangent plane to the expectation
surface at n(o) and the columns of N form an orthonormal basis for the space orthogonal to
the tangent plane. Using a quadratic approximation, Hamilton & Watts (1985) show that the
volume of a 100(1 — @)% confidence region for 6 is approximately equal to

=c| 1‘/"‘/|-%|15|-4{1+k2 tr (D' M)}, (1)
where ¢ and k are constants relative to the design, M is a function of parameter effects curvature,
and D measures the intrinsic curvature in the direction of the residual vector, &. Here D= IL— B
and B= L’[ Al W]L Claiming that (1) cannot be used as a design criterion as it requires knowledge
of the unknown residuals, the authors replace the residual vector in (1) by a vector of zeros, so
that D = I,, and obtain a criterion that seeks designs which minimize the volume

o' =c| V'V {1+ K2 tr (M)}, (2)
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Such designs are functions of 5, o, and of the particular parameterization used and ignore the
intrinsic nonlinearity of the expectation surface.

Hamilton & Watts illustrate the use of their criterion with the intermediate product model
function

1(6, x;) = 6,{exp(—0,x;) —exp (—0,x;)}/(6,—6,) (6,, 62, x,>0), 3)

using initial parameter values 6 =(0-7,0-2). In addition to the original form (3), the authors also
use the following parameterizations:

ratio: b1=6,, ¢2=0,/6;
logarithm: ¢,=log 8,, ¢,=Ilog 6,;
peak: ¢1=(log 8, —log 6,)/ (6, 0,), b2=exp (—0,¢).
They also report that optimal n-pomt designs for n=3,...,7 using (2) results in replicated

two-point designs. For example, for 6 =(0-7,0-2), o =0-1, and n =3, the design (1-05, 5-83, 5-83)
minimizes the area (2) with a value of v'=0-1985.

3. QUADRATIC DESIGNS WITH p+1 POINTS OF SUPPORT

For designs with n> p points, Hamilton & Watts’ criterion uses (2) to approximate (1) since
£ is unknown. We now show that, whenever the number of design points is equal to p+1, we
can still use equation (1) to obtain quadratic designs since we do know the direction and length
of &

For any n greater than p, the residual vector is always orthogonal to the tangent plane. Since
the columns of the n x (n —p) matrix N form an orthonormal basis for the space orthogonal to
the tangent plane, it follows that we can write £ = Na where a is some (n—p) X1 vector. For
the particular case where n=p+1, N is an n-dimensional vector, and a = o since the norm of
¢ is 0. Here N is easily obtained by premultlplymg any vector not in the tangent plane by the
orthogonal projection matrix, I, — U ( o U) U’ and normalizing. It follows that £ is unique
except for its sign, which turns out to be inconsequential since both positive and negative versions
of £ yield the same design. Hence, equation (1) can be used to generate (p+ 1)-point quadratic
designs for given initial parameter estimates.

To illustrate the above methodology, we again consider the intermediate product model function
(3), with initial estimates 6= (0-7,0-2) and o =0-1. The 3-point design which minimizes the area
(1) can be obtained by taking the vector N equal to the cross-product of the two columns of U
and by using a minimization routine analogous to the one described by Hamilton & Watts (1985,
p. 244). The resultant design is (1-02, 4:72, 6-81) with v =0-1895, which represents a 4:5% area
reduction over the corresponding design obtained by Hamilton & Watts given above. When o
was increased to 0-15, the percentage area reduction increased to 8:2%. Further, in all examples
investigated, changing the sign of ¢ resulted only in a rearrangement of the same design; e.g.
(1-02, 6-81, 4-72) instead of (1-02, 4:72, 6-81). Thus, although the orientation of the expectation
surface and the residual vector changes with this sign change, the design remains unchanged.

To investigate the changes in the 3-point designs obtained from minimizing (1) due to param-
eterization and noise level, designs were obtained using the original, ratio, logarithm, and peak
forms of (3) given above, and for o =0, 0-025, 0-05, 0-075, 0-10. The results are listed in Table
1. When o =0, all the optimal designs are the same as the D-optimal design, (1-23, 6-86, 6-86),
since in this case (1) reduces to ¢ A% | ! the first-order volume approximation.

Increasing o causes the optimal des1gn to move away from this point in different directions,
depending on the parameterization. Note that for values of ¢ above 0-20 in this example the
volume approximation (1) breaks down since the Jacobian approximation becomes unstable.
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Table 1. Quadratic optimal designs for varying parameterizations and noise levels

o Original Ratio Logarithm Peak
0-00 (1-23, 6-86, 6-86)  (1-23, 6-86, 6-86)  (1-23, 6-86, 6-86)  (1-23, 6-86, 6-86)
0-025  (1-21, 6-41,7-08)  (1-22,6-37,7-06)  (1-23,6-51,7-17)  (1-25, 6-55, 7-21)
0-05 (1-15, 5-79, 7-11) (1-20, 5-60, 7-09) (1-25, 6-11, 7-43) (1-30, 6-28, 7-59)
0-075 (1-09, 5-17, 7-01) (1-16, 4-58, 6-97) (1-26, 5-67, 7-66) (1-38, 6-02, 7-97)
0-10 (1-02, 472, 6-81)  (1-09, 3-59, 6-55)  (1-28,5-12,7-84)  (1-47, 5-69, 8-32)
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4. CONCLUSION

Whereas D-optimal designs take account of neither the intrinsic nor the parameter-effects
nonlinearity of the model, and quadratic designs based on (2) ignore intrinsic nonlinearity,
(p+1)-point quadratic designs based on (1) take all of the curvature of the expectation surface
into account. The technique used to obtain (p+1)-point quadratic designs is relatively simple;
and the derived ability to check the adequacy of the assumed model is often paramount.
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