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1 Introduction 

For a given process, researchers often have a specific nonlinear model in mind 
and perhaps a reasonable initial estimate of the p model parameters. In this 
situation, optimal design-theory produces designs which typically have only 
p support points even when the final sample size (n) is chosen to exceed 
the number of parameters. Since p-point designs assume that the model 
function is known with complete certainty and provide no opportunity to 
test for the adequacy of the assumed model, they are clearly not"optimal" 
in most practical settings. 

The focus of this paper is to provide an algorithm to obtain efficient 
designs with "extra" design points, or "robust" designs, by nesting a given 
model function (the "original" model fmiction) in a larger one (the "super-­
model") which reduces to the original model for certain parameter choices. 
This design approach, called the nesting design strategy, has been applied to 
linear models in [1], [2], [7], [14], and [15], and only in very simple instances to 
nonlinear models in [3] and [6]. The application to nonlinear models is more 
difficult since the super-model is often less apparent (and more ad hoc) and 
requires a keen understanding of the nature of the various model functions; 
for this reason, the discussion here is limited only to sigmoidal growth models 
(e.g., those given in Chapter 4 of [11] and Chapter 7 of [13]). 

2 Sigmoidal Growth _Models 

Most growth models in current use fall into one ofthree families: theWeibull, 
the Log-Logistic, and the Richards. Special cases of these models include the 
Logistic, Gompertz, Michaelis-Menton, Mischerlich, and Simple Exponential 
models, and often several model functions from these families can be used 
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to adequately describe a given set of data. For example. the two-parameter 
Weibull function (W2), 

(1) 


and the two-parameter Log-Lo~tic model function (LL2), 

1 
(2) 

behave quite similarly over ~+ for certain parameter choices. Since optimal 
designs for either of these model functions typically have only two support 
points (see [9]), functions which generalize the Weibull, Log-Logistic, and 
Richards families are required. 

One important generalization of (1) is the three-parameter humped Weibull 
model function (DW3), 

(3) 


In some instances, the DW3 model function fits the data obtained in ozone 
, dose response studies better that the W2 function (see [12]), although the 
biological interpretation of the corresponding "hump-effect" is not readily ap­
parent. In addition, an important generalizati~n of the Weibull, Log-Logistic 
and Richards model functions is the six-parameter Eclectic model (E6), 

81 (4) 

studied in [10]. Conditions under which this function reduces to the Weibull, 
Log-Logistic and Richards family members are given in [10]; to illustrate one 
of these cases, note that the three-parameter Log-Logistic model function 
(LL3), 

(5) 

is obtained from (4) by taking 82 = 0,85 --;. 0, and 86 =1. 

Optimal Design Theory 

The design problem for the homoskedastic Gaussian nonlinear model 

l, "" iid N(O, 0"2) for i =I, ... ,n 

typically involves choosing an n-point design, e, to estimate some function 
of the p-dimensional parameter vector, tP. with high efficiency. This design 

3 
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associates the design weights Wi, W2 • •.•• Wn with the design points (or vec­
tors) Xl! X2••••, Xn. respectively, and the corresponding (Fisher) information 
matrix is given by 

M(t: .J..) = ~ . 8'l(xd 8'l(Xi) _ V/nV 
<".0/ .L.J W. 8~ 8~' - u •

• = 1 

where V is the nxp Jacobian of'l and 0 = diag{wlJ ... ,Wn}. 

First-order optimal designs typically minimize some convex function of 
M-l. For example, designs which minimize the determinant 1M - l ee, ~O)I 
are called locally D-optimal, where the term "locally" is used to emphasize 
the fact that an initial estimate of the parameter vector has been used. Other 
first order design criteria are discussed in [2J and [4J, and second-order design 
criteria-or procedures which provide designs that attempt to reduce curva­
ture in addition to efficiently estimating parameters-are presented in [8J, [9}, 
and [IOJ. Since optimal designs typically have only p support points regard­
less of the design criteria and final sample size used (see [9} and [16]), we seek 
a practical design algorithm which efficiently estimates the model parameters 
and also provides" extra" design points to check for model mis-speeification. 

A First-Order Nesting Design Strategy 

Suppose that a researcher feels that the original model function 'lor(~.) ade­
quately describes a given process, but desires a d~ign which, in addition to 
efficiently estimating the Pi model parameters of 'lor. also may be used to 
check for the adequacy of the assumed model. As a first step, we search for 
a relevant super-model, 'llm(~l' ~2)' such that 'l,m reduces to 'lor when the 
P2-vector ~2 is equal to some (possibly extended) real vector. It is impor­
tant that the super-model contains a reasonable generalization of the original 
model; thus, for example, by nesting the Log-Logistic model function in the 
Eclectic function, departures from the Log-Logistic model function in the 
direction of the Weibull and Richards functions may be detected. 

A measure of the inefficiency that the design ehas in estimating ~l in 'lor 
is given by IMII-11, and a measure of it's inefficiency regarding detecting de­

partures from 'lor in the direction of'l,m is given by I(M22 -- M21 Mit M12) -, , 

where Mij = VjOVj (i,j = 1,2); see [2]. We combine these measures into 
the single (first-order) inefficiency measure, 

and seek designs given choices of " and ~ = (~i ,~~)', 
designs which are timal here. Note that" controls the 
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amount of information obtained regarding estimation of q,1 relative to detect­
ing departures from the original model function, so that when we take ..:\ =1, 
we obtain information only regarding q,1I whereas when we choose ..:\ =0, we 
obtain information only about departures from the original function. Our rec­
ommendation is to obtain the locally D,\-optimal design, 6, such that it's D- \ 
efficiency relative to the locally D-optimal design, eD, {Mll-1(eD) /Mll-1(6) 3 
is around 0.95. 

5 Examples 

5.1 Example 1 

An environmental scientist believes that the W2 function in (1) with (}1 =(}2 

= 1 adequately describes the dose response relationship of a given cultivar 
exposed to ozone (x), but wishes to allow for the hump-effect of the HW3 
function in (3). Our procedure provides the locally D,\-optimal design using 
the super-model (3) with (}3 = 0 and ..:\ = .95, which associates the weights w 
= 0.10, 0.43 and 0.47 with the points x = 0.33, 0.63 and 1.30, respectively. 
This design is preferred to the locally D-optima.I design for estimating the W2 
model parameters, eD, since this latter design has only two support points 
(at x =0.59 and 1.28 each with equal weight), yet is'"close" to eD since it's 
D-efficiency is 95%. 

5.2 Example 2 

An animal scientist feels that the LL3 model function in (5) with (}1 = (}3 =1, 
and 94, = 2 reasonably describes the amount of food left in a cow's rumin 
x minutes after ingestion, but seeks a deSign with more than three support 
points so as to check for mod~l-mis-specification. Using the E6 model function 
in (4) as the super-model with O2 = 0,95 = .001, (}6 = 1 and ..:\ = .95, the 
corresponding locally D,\-optimal design, e,\, places the weights w = 0.18,' 
0.130.05, 0.30, 0.14 and 0.20 at the points x =0, 0.04, 0.23, 0.60, 1.35 and 
1.97, and results in a D-efficiency of nearly 97%. This design is preferred to 
the locally D-optimal design for estimating the LL3 model parameters since 
this latter design has only three support points (at x = 0, 0.59 and 1.68 each 
with equal weight). It is important to note that since the E6 function also 
has the Weibull and Richards families as special cases, 6. protects against 
departures from the LL3 function in the direction of practically all other 
sigmoidal curves. 

6 A Second-Order Nesting Design Strategy 

The first-order nesting strategy presented above is easily extended to provide 
efficient robust designs with reduced marginal curvature by using a penalty , 

http:0.130.05
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{unction approach. Based on Clarke's criterion for the seriousness of curva­
ture (in [5]), we let ki ::: ma.x{lmc. 1-0.10, OJ, 1; = ma.x{lmc. 1-0.30, OJ, and 
'/fee, tP) = 2:f;lexp{ai ki + .8i Ii}; here mCi is the marginal curvature associ­
ated with the ith parameter in "lor, '/f(e I tP) is our curvature penalty function, 
and the ai's and .8i's are chosen to emphasize certain components of the 
marginal curvature vector over others. Thus, 

for 1/;1 in (6), is a second-order inefficiency measure, and "/ E [0,1] controls 
the degree of emphasis placed on parameter estimation relative to curvature 
reduction. Designs which minimize 1/;2 for specific choices of ,,/, A, and tP, 
called locally D..y-optimal here, are usually preferred to locally D",-optimal 
designs when curvature is a concern. For example, the margiqal curvatures 
associated with 03 using the D",-optimal design given in Example 2 is 0.3066, 
indicating serious curvature by Clarke's criterion. In contrast, the locally 
ny-optimal design obtained by minimizing tP2 (with,,/ = .5, A = .95, each aj 
= 2, and each .8. = 0) is such that no component of the marginal curvature 
vector exceeds 0.10. Further, this latter design, which associates the weights 

'w = 0.08, 0.16 0.12, 0.23, 0.21 and 0.20 with the points x = 0, 0.05, 0.13, 
0.75, 1.53 and 1.91, is also efficient in estimating.the LL3 model parameters 
since it's D-efficiency is 90%. 

7 Discussion 

The design strategies presented here provide researchers with a reasonable 
compromise between so-called" optimal" designs, which typically cannot be 
used to check whether the assumed model is indeed valid, on the one hand, 
and designs comprised of arbitrarily chosen design points (f~r example, those 
with a geometric spacing of points), on the other. The first nesting design 
strategy is intended to be used with"dose-to-linear" nonlinear models (see 
[11]); when designs with reduced curvature are desired, the second nesting 
design strategy should be used. Although our focus here has only been on 
sigmoidal growth curves, the application of the above procedures to other 
classes of nonlinear models is obvious provided relevant super-models can be 
found. 
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