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Abstract: This article presents and illustrates several important subset
design approaches for Gaussian nonlinear regression models and for linear
models where interest lies in a nonlinear function of the model parameters.
These design strategies are particularly useful in situations where currently-
used subset design procedures fail to provide designs which can be used to fit
the model function. Our original design technique is illustrated in conjuction
with D-optimality, Bayesian D-optimality and Kiefer’s Φk-optimality, and is
extended to yield subset designs which take account of curvature.
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1. Introduction

Applied researchers often find nonlinear regression models useful to describe
their phenomena under study since (1) their processes can often be described in
terms of compartmental models the solution of which results in nonlinear mod-
els, (2) these models typically involve a smaller number of model parameters then
linear-model-approximations and (3) the nonlinear model parameters are usually
easier to interpret. For example, growth is often modelled using a sigmoidal curve
and can then be characterized in terms of the so-called LD50-parameter. Sim-
ilarly, pharmacologists often describe the concentration of a drug in the blood
stream using a given nonlinear model function, and focus typically centers on the
area under the concentration curve (the total concentration received), which in-
volves a function of the model parameters. Additional important applications of
nonlinear models are given in Finney (1952), Bates and Watts (1988), Seber and
Wild (1989), Atkinson et al (1993), and Lindsey (2001). But before a nonlinear
regression model can be fit to data and the model parameters interpreted, re-
searchers must decide on the study design, meaning, for example, that decisions
must be made as to when serum concentrations are to be measured, or which
doses are to be chosen. As a result, experimental design strategies for nonlinear
regression models are paramount. Further, by definition, nonlinear models are
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such that the information matrix depends upon (at least some) model parameters,
so that some design strategies focus on so-called local designs, or designs based
on an initial estimate of these model parameters. Readers unfamiliar with the
basics of optimal design methodology are encouraged to consult the non-technical
introduction provided in O’Brien and Funk (2003).

Since interest often centers on only a subset of the parameters in a non-
linear regression models (for example, just the LD50 parameter in a sigmoidal
model function), design of experiments for estimation of this parameter subset
has generated much attention; see Kiefer (1961), Hunter, Hill and Henson (1969),
Box (1971b), Whittle (1973), and Hill and Hunter (1974)). Current practice, as
described in Seber and Wild (1989) and Atkinson and Donev (1992), typically
involves choosing a design which maximizes the information of the parameter sub-
set, or equivalently, which minimizes the generalized first-order variance of the
corresponding least-squares estimate. One problem with this approach is that it
often yields designs for which the information matrix corresponding to the full
parameter vector is singular. As a result, several authors have extended opti-
mal design methodology to allow for singular information matrices; see Vuchkov
(1977), Silvey (1978), Pázman (1980), and Gaffke (1985). However, when the ul-
timate goal is to obtain designs to fit the given model function, a more important
concern is that these designs provide inadequate information about the so-called
nuisance parameters, and hence cannot be used to estimate the model parame-
ters. Indeed, in some important instances, the subset designs cannot even provide
a means of estimating the important parameter subset, and their usefulness is
therefore quite limited in practice.

We introduce here several important design strategies which focus on the pa-
rameter subset of interest, yet which yield some information about the nuisance
parameters, thereby providing designs that can be used to fit the model. Our
subset design technique, originally developed for the local D-optimality design cri-
terion, is easily adapted to make it more robust to the initial parameter estimate
by using the Bayesian design approach given in Läuter (1974b) and Chaloner and
Larntz (1989), to make it robust to the D-criterion by using Kiefer’s so-called Φk

criterion (Kiefer, 1975), and to take account of curvature. These extensions are
important since, for example, if an optimal design is chosen under the assumption
that the model parameters are θo

1 = 0.2 and θ0
2 = 0.7 (see the first example in

the next section), but in fact the model parameters are quite different from these
values, then the quality of the chosen design may indeed be very poor; this fact,
also underscored in Atkinson and Donev (1992), highlights the importance of the
parameter-robust design strategy discussed below. Similar arguments highlight
the importance of seeking Φk-optimal designs and curvature-adjusted designs
when researchers desire designs that are optimal under several design criteria or
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when linear approximations to nonlinear models are inadequate.

2. Background and Applications

In this section we review the original subset design strategy of Hill and Hunter
(1974) and describe several examples for which the design strategy is useful. Ad-
ditional details of the subset criterion are given in Silvey (1980) and Atkinson
and Donev (1992); as mentioned above, readers interested in a gentle introduc-
tion to the concepts involved in optimal design methodology, including a simple
illustration involving an information matrix and variance function, are referred
to O’Brien and Funk (2003). For the Gaussian nonlinear model with model func-
tion, E(Y ) = η(x, θ), the p×1 parameter vector θ can be partitioned as θ =

(θ1

θ2

)

,
where θ1 is of dimension p1× 1, and θ2 is of dimension p2× 1 (p1 + p2 = p).
The subset design problem for this model function involves choosing a design
with n design points, denoted ξ, to estimate the full parameter vector, yet with
the subset of interest, θ2, estimated more precisely than the so-called nuisance
parameters, θ1. For example, for the above nonlinear growth-curve example, the
nuisance parameters include the asymptote(s) and slope parameters, whereas the
parameter of interest is the LD50 parameter. Here the design ξ can be written as

ξ =

{

x1, x2. . . . , xk

ω1, ω1, . . . , ωk

}

where the k (k ≤ n) distinct design support “points” (or vectors) x1, x2, ... ,
xk are elements of the design space X, and the associated weights ω1, ω2, ... ,
ωk are non-negative real numbers which sum to one. For a given n, whenever
integers n1, n2, . . . , nk exist such that ωj =

nj

n for j = 1 to k, then ξ is said to be
an discrete-weight design; otherwise, it is said to be a continuous-weight design.
Thus, for example, a study design involving 10 patients receiving (drug) dose
x1 = 5mg, 20 patients receiving dose x2 = 15mg, and 30 patients receiving dose

x3 = 50mg, denoted ξ =

{

5 15 50
1/6 1/3 1/2

}

, illustrates the use of a discrete-

weight design for n = 60 total patients. Whether ξ is discrete- or continuous-
weight, nωj can be thought of as the ”number of observations” to be taken at
experimental level xj . Continuous-weight designs can then be converted into
practical ones by using rounding procedures given in Pukelsheim and Rieder
(1992) and Pukelsheim (1993).

For the design ξ, the n × p Jacobian matrix V = ∂η
∂θ can be partitioned as

V = [V1 |V2], where V1 = ∂η
∂θ1

is of dimension n × p1 and V2 = ∂η
∂θ2

is of
dimension n× p2. Assuming Gaussian errors, the information matrix associated
with the full parameter vector θ is given by M = M(ξ,θ) = VT WV, where W
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= diag{ω1, ω2, ... , ωk}. Since M can likewise be partitioned as

M =

[

M11 M12

M21 M22

]

=

[

VT
1 WV1 VT

1 WV2

VT
2 WV1 VT

2 WV2

]

,

the information corresponding to the subset θ2 in the model function η(x, θ) is
given by M22-M21M

+
11M12, where M+

11 is a generalized inverse of M11. The
subset design procedure of Hill and Hunter (1974) advocates the use of locally
Ds(θ2)-optimal designs, or designs which maximize the subset information defined
by the determinant

∣

∣M22 −M21M
+
11M12

∣

∣ ; (2.1)

again, the word “locally” is used here to stress the fact that these designs use
an initial estimate of the parameters (Chernoff, 1953). Equivalently, Ds(θ2)-
optimal designs also minimize the determinant of the covariance matrix of the
least-squares estimate of θ2,

(M22 −M21M
+
11M12)

−1. (2.2)

As an aside, O’Brien and Rawlings (1996) point out that we can write

|M| = |M11|
∣

∣M22 −M21M
+
11M12

∣

∣ = |M11| |M22|∆,

where ∆, which lies between zero to one, is larger the more orthogonal the hyper-
planes spanned by the columns of V1 and V2. It follows that Ds(θ2)-optimal de-
signs make the volume of the parallelepiped formed from the columns of W1/2V2

and the angle between the above hyper-planes large. In contrast, D-optimal de-
signs, or designs which maximize the determinant |M|, make the volume of the
parallelepiped formed from the columns of W1/2V1, the volume of the paral-
lelepiped formed from the columns of W1/2V2, and the angle between these
hyper-planes large. Hill and Hunter (1974) illustrate these concepts geometri-
cally for the case where p1 = p2 = 1 and using only discrete-weight designs and
n = 2 (so that W can be ignored).

As discussed in Atkinson and Donev (1992), the variance function which cor-
responds to (2.2) is

dS(x, ξ, θ) = d(x, ξ, θ)− d1(x, ξ, θ)

=
∂η(x)

∂θT
M−1(ξ, θ)

∂η(x)

∂θ
− ∂η(x)

∂θT
1

M−1
11 (ξ, θ)

∂η(x)

∂θ1

whenever both M and M11 are invertible. To show that a given design, ξ∗,
is indeed Ds(θ2)-optimal, the General Equivalence Theorem (originally given in
Kiefer and Wolfowitz (1960) and extended to the case of subset designs in Kiefer
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(1961)) can be used by verifying that for all x ∈ X, dS(x, ξ∗, θ) ≤ p2, and that
dS(xj , ξ

∗, θ) = p2 at each of the support points of ξ∗. Extensions of these results to
handle the situation where M is singular, and which involve Fréchet derivatives,
are given in Silvey (1980). Computational procedures to obtain optimal designs,
discussed for example in Chapter 15 of Atkinson and Donev (1992), are often
based on the General Equivalence Theorem.

These theoretical results notwithstanding, it is not uncommon, however, that
the Ds(θ2) design strategy of Hill and Hunter (1974) produces designs with less
than p support points (see the following representative and important examples),
and hence these designs lead to the troublesome situation in which the model can-
not be fit once the design has been implemented and the data gathered. Further,
although Atkinson and Bogacka (1997) consider a combined criterion combining
information regarding θ1 into the (subset) design criterion, they fail to point out
that singular subset designs can indeed result and thus be useless in fitting the
assumed model. In the next section, we give a modification of this subset strat-
egy which provides designs for which the full parameter vector is estimable and
which are still efficient vis-a-vis the Ds(θ2)-optimal design. Throughout the rest
of this article, we focus on the following key examples useful in environmental
and biomedical applications and the detection of drug synergy, though mindful
that the techniques developed here can easily be adapted to a wide array of other
applications.

Example one. Hill and Hunter (1974) illustrates the subset design procedure
outlined above using the two-parameter intermediate product (IP2) model func-
tion (also examined in Hamilton and Watts (1985) and O’Brien (1992)), given
by the equation

η(x, θ1, θ2) =
θ1

θ1 − θ2

(

e−θ2x − e−θ1x
)

, x ≥ 0.

This model is extremely useful in the modelling of phenomena as diverse as chem-
ical reactions and the movement of drugs through the body (pharmacokinetics);
see, for example, Atkinson and Donev (1992), Atkinson, et al (1993) and Lind-
sey (2001). To briefly highlight the full D-optimality criterion (which provides
information regarding both model parameters), note that the local D-optimal
design corresponding to the initial parameter estimates θo

1 = 0.2 and θ0
2 = 0.7 is

ξD =

{

1.59 5.89
1/2 1/2

}

. Indeed, (local) D-optimality of this design is established

by noting that the corresponding variance function, graphed in Figure 1, does
not exceed the line y = 2 and achieves its maximum at the support points of
ξD (viz, 1.59 and 5.89); all other designs would result in variance functions that
exceed y = 2 over some portion of the design region.
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Figure 1: Variance function for IP2 model function and D-optimal design

In contrast with this design, the locally Ds(θ2)-optimal subset design for
this model using the same parameter guesses places all weight at the point x =
6.76189, thereby providing no means to fit the model. For this model function, the
area under the curve (AUC) — relevant in pharmacokinetic-pharmacodynamic
applications — is given by φ = 1/θ2. Thus, in this setting since the Ds(φ)-optimal
design also places all weight at the point x = 6.76189, even the parameter of in-
terest (φ) is non-estimable using this subset design. Indeed, Ds(θ2)-optimality of
this design is established using the extension of the General Equivalence Theorem
given by Silvey (1980); interestingly, this design disagrees with the one provided
in Hill and Hunter (1974), who searched only over the space of discrete-weight
designs, and report a design with equal weight at x1 = 6.66 and x2 = 6.87. Since
Hill and Hunter (1974) only used a grid of points (with two decimal place accu-
racy) and with n fixed at two, this example also highlights the need to search for
continuous-weight designs since the discrete optimization problem can evidently
be unstable. Finally, lest we leave the reader with the impression that singular
subset designs are more the exception to the rule than the rule itself, note that
the locally Ds(θ2)-optimal subset design for (θo

1,θ
0
2) = (0.15,0.70) places all the

weight at x = 8.401, for (θo
1,θ

0
2) = (0.25,0.70) places all the weight at x = 5.755,

and so on. The point, therefore, is clear: subset designs can fail to provide in-
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formation about even the important model parameters — at least if one uses the
local D-optimality criterion.

Example two. Chaloner (1989) and Cook and Weisberg (1990) consider the
(Gaussian) quadratic regression model, denoted here by

η(x, θ0, θ2, φ) = θ0 − 2θ2φx+ θ2x
2, 0 ≤ x ≤ 1, (2.3)

where focus lies in the turning point φ. Alternatively, one could write

η(x, θ) = θ0 + θ1x+ θ2x
2, φ = − θ1

2θ2
, (2.4)

highlighting the fact that the design problem for a nonlinear function of the pa-
rameters of a linear model can often be transformed into a subset design problem
for a nonlinear model. A practical application of this model occurs as a quadratic
approximation in environmental science in which x corresponds to dose of ozone
applied to experimental plants, y corresponds to plant yield, and for which re-
duction of ozone below ambient air levels actually corresponds to a drop in plant
yield; see van Ewijk and Hoekstra (1994) for datasets and illustrations.

Local Ds(φ)-optimal designs for this model, which do not require initial
guesses of either θ0 or θ2, have only two support points when the initial estimate
φo lies in the interval [14 ,

3
4 ] and three support points otherwise; see Chaloner

(1989) for a discussion and additional applications. Interestingly, some Bayesian
D-optimal designs, or designs which maximize the expected log-information

∫

log
∣

∣M22 −M21M
+
11M12

∣

∣ p(φ) dφ,

where p(φ) is an assumed prior for the turning point φ, can also have only two
support points for this model; indeed, Pilz (1991) gives necessary and sufficient
conditions for even a one-point Bayesian design to be optimal. This is impor-
tant since local optimal designs can be criticized as dependent upon the initial
parameter guess, and, more importantly, since it has been inferred that this
Bayesian criterion will always yield so-called robust designs, or design with extra
support points that can be used to test for lack of fit (see e.g. Läuter (1974a),
Atkinson and Donev (1992)). By way of illustration, Table 1 provides the local
Ds(φ)-optimal design for this model with initial estimate φo = 0.40 and various
Bayesian Ds(φ)-optimal designs with (discretized) uniform priors centered at this
value. Note that, in contrast to the claim to the contrary in Atkinson, et al (1993),
several of these Bayesian designs do not have enough support points to fit the
assumed model function. Therefore, this example highlights that subset designs
associated with the Bayesian D-optimality criterion can also be impractical.
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Table 1: Local and Bayesian D2(φ)-optimal designs for example 2.

p(φ) Bayesian D-optimal Design

φo = 0.40
{

0 0.8
0.5 0.5

}

Uniform on [0.35, 0.45]
{

0 0.88
0.5 0.5

}

Uniform on [0.30, 0.50]
{

0 0.97
0.5 0.5

}

Uniform on [0.25, 0.55]
{

0.08 1
0.5 0.5

}

Uniform on [0.20, 0.60]
{

0.18 1
0.5 0.5

}

Uniform on [0.10, 0.70]
{

0.38 1
0.5 0.5

}

Uniform on [0.02, 0.78]
{

0 0.5 1
0.019 0.5 0.481

}

This and the previous example highlight situations in which interest focuses
on a (linear or nonlinear) function φ = φ(θ), and where φ maps ℜp onto ℜs for
s ≤ p. When φ is linear, we write φ = AT θ, and if in addition s = p and A

is nonsingular, then φ corresponds to a reparameterization of the original model
function. Whether φ is linear or nonlinear, the covariance matrix of the least-
squares estimate of φ is proportional to ATM−1A, where AT = ∂φ

∂θ is s × p of
rank s. Designs which minimize the determinant of

ATM−1A, (2.5)

called DA-optimal designs, were develop in Sibson (1974); when s = 1 — as in
the previous examples — these designs are called cθ-optimal (see Atkinson, et al

(1993)). Finally, for the case where s = p2 and φ = θ2 (so that AT = [0, Ip2
],

equation (2.5) reduces to equation (2.2), and it is thus seen that DA-optimality
indeed generalizes Ds-optimality.

Example three. An important concern in biomedical research is the testing for
synergy between similar drugs since then an enhanced therapeutic effect is real-
ized when the drugs are used in combination; see Tallarida (2000) for biomedical
applications and O’Brien (2004) for additional examples and references. When
the couple (a, b) represents the amount of compounds or drugs A and B present
in a given medium (e.g., the body), the effective dose (or concentration) present
in the medium can be modelled statistically by

d = a+ θ4b+ θ5
√

θ4ab, (2.6)

where θ4 is the potency of compound B relative to compound A, and θ5, called
the coefficient of synergy in Finney (1952), measures the degree of antagonism
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or synergy between the two compounds. Gerig, Blum and Meier (1989) relates
the effective dose of two phenolic acids to the expected growth of cucumber
seedlings (µ = E(Y )) using the Gaussian distribution, the identity link (µ = η)
and the expression (2.6) with the three-parameter log-logistic (LL3) sigmoidal
model function,

η =
θ1

1 +
(

d
θ2

)θ3

. (2.7)

This model function is also useful in detecting interactions when studying the
effect of air pollutants on crop yield (see O’Brien (1993)) and the efficacy of the
antiviral drugs such as AZT and ddI (see Machado and Robinson (1994)). Instead
of focusing on the LD50 parameter (θ2), the goal here is first to obtain a subset
design focusing on the coefficient of synergy θ5 so as to assess whether the given
compounds act synergistically (i.e., enhance one another) or act antagonistically
(counter-act one another), and to then measure the degree of such synergy or
antagonism.

Using the parameter estimates given in Gerig, Blum and Meier (1989) — viz,
θo
2 = 0.194, θo

3 = 2.72, θo
4 = 0.626, θo

5 = -0.826 — the locally Ds(θ5)-optimal
design for this model, which is independent of the value of θ1, is

{ (0.165
0.264

) (0.194
0

) ( 0
0.310

)

1/2 1/4 1/4

}

(2.8)

Interestingly, the dose at each of these design points is identical (d = 0.194) —
and identical to the initial estimate of the LD50 — and so use of this design
would mean that the model function (2.7) could not be fit to the data. Equally
interesting is the fact that the locally Ds(θ4,θ5)-optimal design - or subset D-
optimal design focusing on the subset

(θ4

θ5

)

- has the same design support points
as in (2.8) but each with the weights ω1 = ω2 = ω3 = 1/3.

Further, so as to illustrate that the above singularity problem associated with
subset designs can arise when other subset design criteria are used, let α1, ...,
αp2

be the p2 eigenvalues associated with the covariance matrix in (2.2). Then
designs which minimize the average

{

αk
1 + ...+ αk

p2

p2

}1/k

, k ∈ (0,∞), (2.9)

are called (locally) subset-Φk optimal (see Kiefer (1975)); then, Ds-, As- and
Es-optimal designs are obtained as special cases for k → 0+, k = 1, and k →∞,
respectively. For the similar compounds example, each of the locally Ds(θ4,θ5)-,
As(θ4,θ5)- and Es(θ4,θ5)-optimal designs has the support points given above, x1=
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(0.165
0.264

)

, x2=
(0.194

0

)

, and x3=
( 0
0.310

)

, but the weights are ω1= ω2= ω3=
1
3 for the

Ds criterion, ω1= 0.406, ω2= ω3= 0.297 for the As criterion, and ω1 = 1/2, ω2=
ω3 = 1/4 for the Es criterion. Hence, we note that as k increases in (2.9), subset
designs focusing on the subset

(θ4

θ5

)

tend to put more weight on the interior point
x1 and less weight where each factor (phenolic acid, drug, pollutant, etc.) is
varied in isolation.

Before leaving this example, we provide one final generalization of the original
Ds(θ2)-optimality criterion, and which connects the DA criterion of (2.5) and
Kiefer’s subset-Φk criterion. Denoting the s eigenvalues of ATM−1A in (2.5) by
τ1, ..., τs, designs which minimize the sum {(τk

1 + . . . + τk
s )/s}1/k for k ∈ (0,∞),

called ΦA,k-optimal here, provide subset-optimal designs for the s functions, φ =
φ(θ). Even in this most general of settings, singular subset designs do result from
the subset design procedures.

These mathematical details notwithstanding, this example demonstrates that
subset designs for a whole class of subset design criteria (subset-ΦA,k optimality)
can be inadequate for estimating the model parameters, and are thus impractical
in many applied settings. Also, the previous example highlights that the Bayesian
parameter-robust strategy does not provide enough design support points, so a
more direct design approach is needed, one which provides some information
regarding all model parameters.

3. A First-Order Design Criterion

We now provide an extension of the subset criterion so as to obtain designs
which can be used to fit the assumed model. The problem with seeking designs to
maximize the determinant-information in (2.1) is that these designs occasionally
provide no information regarding the nuisance parameters θ1 in the model func-
tion η(x, θ) = η(x, θ1, θ2). Alternatively, for 0 ≤ β ≤ 1, the objective function

ψθ(ξ, β) =
1− β
p1

log |M11|+
β

p2
log

∣

∣M22 −M21M
+
11M12

∣

∣

is a weighted sum of (1) the log information of θ1 when θ2 is assumed known, M11,
and (2) the log information of θ2 when θ1 is unknown, M22 - M21M

+
11M12. This

objective function includes the Ds(θ2)-optimality and the D-optimality criterion
functions as special cases for the values β = 1 and β = p2

p , respectively. Thus, for
a given choice of β in the interval [p2/p, 1] and initial parameter estimate θo, we
define designs which maximize ψθo(ξ, β) to be locally Dβ-optimal designs. This
objective function is analogous to the weighted average used in Atkinson and
Donev (1992) for model nesting in linear models, and was proposed in O’Brien
(1993) for singular subset designs and used in Atkinson and Bogacka (1997) to
allow for a degree of model uncertainty. Extensions of this criterion to include a
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Bayesian prior p(θ), via use of the criterion function
∫

ψθ(ξ, β) p(θ) dθ, and to
generalize the DA criterion and Kiefer’s subset-Φk criterion discussed Example 3
above are straightforward. Finally, the variance function (White (1973), Atkinson
and Donev (1992)) corresponding to this objective function can be used to ensure
optimality of a candidate Dβ-optimal design by invoking the relevant version of
the General Equivalence Theorem.

The design strategy suggested here involves finding an array of Dβ-optimal
designs for various choices of β (typically near 0.90) and then selecting a final
design based on a reasonably small value of the subset information loss (SIL).
Since the Ds(θ2)-optimal design, ξ∗s , optimizes

∣

∣M22 −M21M
+
11M12

∣

∣ =
∣

∣M22
∣

∣,
the subset information loss for an arbitrary design ξ relative to ξ∗s is defined here
as



1−
[
∣

∣M22(ξ)
∣

∣

|M22(ξ∗s )|

]1/p2



× 100%

These ideas are illustrated with the examples introduced in the previous Section.

Table 2: Dβ-optimal designs and subset information
loss for the Intermediate Product (IP2) model.

β Optimal design SIL(%)

1.00

{

6.76
1

}

0.0

0.99

{

1.37 6.73
0.01 0.99

}

1.0

0.95

{

1.40 6.61
0.06 0.94

}

4.9

0.90

{

1.43 6.49
0.11 0.89

}

9.8

0.85

{

1.45 6.39
0.16 0.84

}

14.6

0.50

{

1.59 5.89
0.5 0.5

}

48.8

Example one continued. For the IP2 model function and initial parameter
choices given in Hill and Hunter (1974) and used above (θo

1 = 0.2 and θ0
2 = 0.7),

locally Dβ-optimal designs and subset information loss (SIL) values are given in
Table 2 for β = 1, 0.99, 0.95, 0.90, 0.85 and 0.50. For this example, β = 1
corresponds to the (local) Ds(θ2)-optimal design and β = 0.50 corresponds to
the full D-optimal design, and these designs are provided only for the purpose of
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comparison. Our recommendation here would be to use the compromise design
corresponding to β = 0.90 since the information loss associated with this design
is only 9.8% and since this design’s having two support points ensures that the
assumed model function can be fit to the data. Note too that this design is
especially useful if the final sample size can be chosen to be a multiple of 9
(since the weight of x = 1.43 is approximately 1/9), although other rounding
procedures for continuous-weight designs are discussed at length in Pukelsheim
and Rieder (1992). Our suggestion, then, might be the use of a design with 2 runs
at x = 1.43 and 16 runs at x = 6.49, and although minimal (9.8%) information
is lost regarding the subset parameter of interest, this design can indeed be used
to fit the IP2 model function.

Whenever uncertainty exist concerning the initial parameter guesses, the
Bayesian Dβ-optimal design for β = 0.90 should be obtained for this model,
for example, with θ1 and θ2 independently and uniformly distributed over the
region [0.10, 0.30] × [0.50, 0.90]. This Bayesian design associates the weights 0.21
and 0.79 with the support points 1.62 and 6.57, respectively, and results in a mod-
erate shift from the local design proposed in the previous paragraph. Further,
since the subset information loss of this Bayesian design relative to the Bayesian
design for β = 1.00 is only 2.1%, this Bayesian D0.90-optimal design is indeed
recommended in this setting. Therefore, our final suggestion might be to take 2
measurements at x = 1.62 and 18 measurements at x = 6.57; this final design
differs slightly from the local Dβ-optimal design given above.

Example two continued. Whereas the (singular) subset design for the quadratic
model with turning point φo = 0.50 associates the weight ω = 1/2 with each of
the points x = 0 and x = 1.00, the Dβ-optimal design,

{

0 1/2 1
(1 + β)/4 (1− β)/2 (1 + β)/4

}

is nonsingular for β ∈
(

1
3 , 1

)

since it has three support points. It turns out also

that this Dβ-optimal designs has a subset information loss of (1−β)
2 ×100%, so for

example the D0.80-optimal design,

{

0 0.5 1
0.45 0.10 0.45

}

, has a SIL of only 10%,

and is thus recommended here. This latter design would take for example 4 runs
at x = 1/2 and 18 runs at each of x = 0 and x = 1 in a study involving n = 40
total runs.

Example three continued. Table 3 gives the locally Dβ(θ5)-optimal designs
for the LL2 model function, η = 1/[1 + (d/θ2)

θ3 ] with effective dose d = a +
θ4b + θ5

√
θ4ab for β = 1.00, 0.90, and 0.25, with the corresponding effective
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concentrations; note that β = 1.00 corresponds to the singular Ds-optimal design
given in (2.8) and β = 0.25 corresponds to the full D-optimal design for which
equal information is obtained regarding each of the model parameters. We use
the (simplified) LL2 model function here (with upper asymptote set to unity)
instead of the LL3 model function used in the previous Section since designs for
the LL3 model only require that additional runs (20% of the total) be placed at the
origin. We observe that Dβ(θ5)-optimal designs for this model have three support
points on each of two isoboles, or curves of equal dose, and as β →1−, these
two isoboles become coincidental, whence the singularity of the subset design.
This can be observed in Table 3 since as β increases from 0.25 to 0.90, the
isoboles move together from effective doses 0.148 and 0.252 to effective doses
0.176 and 0.213; finally, as β becomes unity, these isoboles become identical, and
insufficient information is provided to fit the model function. In situations where
the primary purpose of the experiment is to detect synergy or antagonism, our
recommendation is to use the D0.90(θ5)-optimal design since this design is efficient
for estimating the synergy parameter (θ5) and also provides the opportunity to
fit the model to the data. This latter design is well-approximated by associating
weights 1/8 with each of the four points on the vertical and horizontal axes
(corresponding to the phenolic acids in isolation) and weights 2/8 with each of
the two center points, (0.150,0.240) and (0.181,0.290); again the information loss
is minimal (less than 10%) and this design can be used to fit the model.

Table 3: Dβ-optimal designs for the log-logistic (LL2) synergy model.

β Optimal design Effective dose

1.00

{ (

0.165
0.264

) (

0.194
0

) (

0
0.310

)

1/2 1/4 1/4

}

d = 0.194 only

0.90

{ (

0.150
0.240

) (

0.181
0.290

) (

0.176
0

) (

0.213
0

) (

0
0.281

) (

0
0.340

)

0.246 0.246 0.127 0.127 0.127 0.127

}

d = 0.176 and 0.213

0.25

{ (

0.127
0.201

) (

0.214
0.345

) (

0.148
0

) (

0.253
0

) (

0
0.238

) (

0
0.405

)

1/6 1/6 1/6 1/6 1/6 1/6

}

d = 0.1486 and 0.252

4. A Second-Order Design Criterion

In this section, we briefly discuss an extension of the above results to account
for model nonlinearity; readers unfamiliar with the basic concepts of curvature
are advised to consult the non-technical overviews given in Ratkowsky (1983) and
O’Brien and Wang (1996). Note that the Dβ-optimal designs discussed above
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equivalently minimize the objective function

γ1(ξ, β, θ) =
1− β
p1

log
∣

∣M−1
11

∣

∣ +
β

p2
log

∣

∣

∣

(

M22 −M21M
+
11M12

)

−1
∣

∣

∣
,

where M−1
11 is proportional to the first-order covariance matrix corresponding

to θ1 in the model η(θ1, θ2) when θ2 is known and
(

M22 −M21M
+
11M12

)

−1

is proportional to the first-order covariance matrix of θ2 in the same model
when θ1 is unknown. In contrast, O’Brien and Rawlings (1996) explores second-
order MSE designs based on the second-order covariance matrix, S = σ2KKT +
σ4K(V1 + V2 + V3)K

T , given in Clarke (1980), and the second-order bias vec-
tor, b = -1

2σ
2K

∑

aT
kk

, given in Box (1971a); further details of these expres-
sions are given in Seber and Wild (1989). For the partitions of S and b, S =
[

S11 S12

S21 S22

]

and b =

[

b1

b2

]

corresponding to θ1 and θ2 respectively, a natural

extension of the above γ1(ξ, β, θ) objective function is

γ2(ξ, β, θ) =
1− β
p1

log

∣

∣S + bbT
∣

∣

∣

∣S22 + b2b
T
2

∣

∣

+
β

p2
log

∣

∣S22 + b2b
T
2

∣

∣ ,

and we define designs that minimize γ2(ξ, β, θ) to be locally D2β-optimal and
those that minimize

∫

γ2(ξ, β, θ) p(θ) dθ to be Bayesian D2β-optimal.
In contrast with first-order designs, D2β-optimal designs depend on the noise

level σ* = σ/
√
r where σ is the model standard deviation and r (r ≥ 1) is the

number of replications used of the design. Indeed the connection between these
criteria is that D2β-optimal designs for σ = 0 are equivalent to D-optimal designs.
Thus, although D-optimal designs for situations where σo = 0.05 and for those
where σo = 0.25 are identical, the corresponding D2β-optimal designs may differ
appreciably. More precisely, the difference between Dβ- and D2β-optimal designs
is an increasing function of the noise level and the degree of nonlinearity (or cur-
vature) associated with the model function and design. One measure of curvature
is the root mean square parameter-effects curvature measure (RMSθ) introduced
in Beale (1960) and highlighted in Bates and Watts (1980, 1988), and is used in
the next example to highlight the lower curvature and bias associated with a lo-
cally D2β-optimal design; those unfamiliar with these nonlinearity measures can
nonetheless appreciate the corresponding curvature reduction associated with the
D2β-optimal design.

Example one continued. Table 4 gives the optimal designs, subset information
loss, squared length of the bias vector and RMSθ curvature associated with the
locally and Bayesian D0.90-optimal designs given above and with the locally D2β-
optimal design for β = 0.90 using σo = 0.05. Thus, this example highlights
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the high parameter-effects curvature (RMSθ curvature) associated with the local
D0.90-optimal design and the substantial shift in moving from the first- to the
second-order local design. That the local second-order designs is preferable here
to the first-order one is witnessed by noting that the associated bias vector is
85% shorter and the RMSθ curvature is 52% less. It is interesting to point out
that for this example, the Bayesian first-order design has relatively low bias and
curvature measures as well. Our final recommendation for a study involving n =
18 runs would be to place 6 runs at x = 1.75 and 12 runs at x = 6.20.

Table 4: First- and second-order local and Bayesian optimal designs, subset
information loss, squared length of bias vector, and RMSθ curvature for the
Intermediate Product (IP2) model.

Design Criterion Optimal Design SIL (%) bTb RMSθ curvature

local D0.90-optimality

(

1.43 6.49
0.11 0.89

)

9.8 0.14 1.66

Bayesian D0.90-optimality

(

1.62 6.57
0.21 0.79

)

2.1 0.04 0.90

local D2β-optimality

(

1.75 6.20
0.32 0.68

)

4.1 0.02 0.79

5. Discussion

Although the subset design procedure give in Hill and Hunter (1974) focusses
on estimating the subset θ2 more precisely than the nuisance subset θ1, numerous
important examples demonstrate that the corresponding design fails to allow for
estimation of all the model parameters, and in some examples (as in the AUC
parameter for the IP2 model) cannot even be used to estimate the model subset
parameters. In contrast, the first- and second-order design strategies presented
here more directly address the issue of providing a great deal of information about
the parameters of interest, yet allow for estimation of all model parameters and
result in only a modest loss in subset information. The Bayesian extension is often
essential since Bayesian designs have been found to be quite robust to misspeci-
fication of the initial parameter estimate and prior distribution; details are pro-
vided in Arumugham (1992). Also, as mentioned above, Bayesian optimal designs
can often have “extra” (greater than the number of parameters) support points
which in turn can be used to check the adequacy of the assumed model function
should this be an important issue to the researcher. As has been argued in Hamil-
ton and Watts (1985), nonlinear design criteria should take account of curvature
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as well as provide for efficient estimation of the model parameters, and the exam-
ple discussed in the previous section highlights the substantial difference between
first- and second-order designs. Thus, in situations where interest focusses on a
subset of the parameters of a nonlinear regression model, our recommendation
is to obtain the Bayesian Dβ-optimal design for β near 0.90 and to calculate an
associated curvature measure (such as RMS or marginal curvature). If this latter
curvature measure is high, the Bayesian D2β-optimal design is recommended in-
stead. Interested readers are encouraged to download SAS programs to find (and
verify) these designs from the author’s webpage, www.math.luc.edu/˜tobrien/.
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