Some combinatorics of \hat{sl}_n crystals
(different models for \hat{sl}_n crystals and how they are related)

Peter Tingley

Massachusetts Institute of Technology

Korea, September 2009

1Notes "Explicit crystal maps between cylindric plane partitions, multi-partitions and multi-segments" are available at www-math.mit.edu/~ptingley/
Outline

1 Motivation
 - Crystals, Characters and Combinatorics
 - What does “understand" mean anyway?
 - Two examples

2 Some structures I understand
 - The multi-partition realization of $B(\Lambda)$
 - Understanding the infinity crystal
 - Relationship with the Kyoto path model

3 A structure I only partly understand
 - Fayers’ crystals
 - Relationship with monomial crystals (partly conjectural)
The adjoint representation of \mathfrak{sl}_3

There are 6 one-dimensional weight spaces and 1 two-dimensional weight space. The generators F_1 and F_2 act between weight spaces. There are 4 distinguished one-dimensional spaces in the middle. If we use $U_q(\mathfrak{sl}_3)$ and 'rescale' the operators, then 'at $q=0$', they match up. You get a colored directed graph. We will only work with highest weight crystals, and ignore the functions $\text{wt}, \epsilon, \phi$: $B \rightarrow P$ usually included in the definition. These are recoverable from the graph (up to global shifting by a null weight in the affine case).
The adjoint representation of \mathfrak{sl}_3

- There are 6 one dimensional weight spaces and 1 two dimensional weight space.
The adjoint representation of \mathfrak{sl}_3

- There are 6 one dimensional weight spaces and 1 two dimensional weight space.

\[\text{2 dim} \]

\[\cdot \quad \cdot \quad \cdot \quad \cdot \quad \cdot \quad \cdot \]

$\text{Peter Tingley (MIT)}$
The adjoint representation of \(\mathfrak{sl}_3 \)

- There are 6 one dimensional weight spaces and 1 two dimensional weight space.
- The generators \(F_1 \) and \(F_2 \) act between weight spaces.
The adjoint representation of \mathfrak{sl}_3

- There are 6 one dimensional weight spaces and 1 two dimensional weight space.
- The generators F_1 and F_2 act between weight spaces.
The adjoint representation of \mathfrak{sl}_3

- There are 6 one dimensional weight spaces and 1 two dimensional weight space.
- The generators F_1 and F_2 act between weight spaces.
- There are 4 distinguished one dimensional spaces in the middle.
The adjoint representation of \mathfrak{sl}_3

- There are 6 one dimensional weight spaces and 1 two dimensional weight space.
- The generators F_1 and F_2 act between weight spaces.
- There are 4 distinguished one dimensional spaces in the middle.
- If we use $U_q(\mathfrak{sl}_3)$ and ‘rescale’ the operators, then “at $q = 0$”, they match up.
The adjoint representation of \mathfrak{sl}_3

- There are 6 one dimensional weight spaces and 1 two dimensional weight space.
- The generators F_1 and F_2 act between weight spaces.
- There are 4 distinguished one dimensional spaces in the middle.
- If we use $U_q(\mathfrak{sl}_3)$ and ‘rescale’ the operators, then “at $q = 0$”, they match up.
The adjoint representation of \mathfrak{sl}_3

- There are 6 one dimensional weight spaces and 1 two dimensional weight space.
- The generators F_1 and F_2 act between weight spaces.
- There are 4 distinguished one dimensional spaces in the middle.
- If we use $U_q(\mathfrak{sl}_3)$ and ‘rescale’ the operators, then “at $q = 0$”, they match up. You get a colored directed graph.
The adjoint representation of \(\mathfrak{sl}_3 \)

- Often the vertices of the crystal graph can be parametrized by combinatorial objects.
The adjoint representation of \mathfrak{sl}_3

Often the vertices of the crystal graph can be parametrized by combinatorial objects.
Often the vertices of the crystal graph can be parametrized by combinatorial objects.

Then the combinatorics gives information about representation theory, and vise-versa.
The adjoint representation of \mathfrak{sl}_3
The adjoint representation of \mathfrak{sl}_3

- We will only work with highest weight crystals, and ignore the functions $\text{wt}, \varepsilon, \varphi : B \to P$ usually included in the definition.
The adjoint representation of \mathfrak{sl}_3

- We will only work with highest weight crystals, and ignore the functions $\text{wt}, \varepsilon, \varphi : B \rightarrow P$ usually included in the definition. These are recoverable from the graph (up to global shifting by a null weight in the affine case).
\(\hat{\mathfrak{sl}}_n \) crystals

\(\hat{\mathfrak{sl}}_n \) crystals for \(n \geq 3 \) is the Kac-Moody algebra with Dynkin diagram \(\bullet \overset{u}{\rightarrow} \overset{u}{\rightarrow} \overset{u}{\rightarrow} \overset{u}{\rightarrow} \overset{u}{\rightarrow} \overset{u}{\rightarrow} \cdots \).

\(\hat{\mathfrak{sl}}_n \) is (almost) generated by \(\{ E_i, F_i \} \) for \(0 \leq i \leq n-1 \) subject to the relations that for each pair \(0 \leq i < j \leq n-1 \), \(\{ E_i, F_i, E_j, F_j \} \) generate a copy of \(\mathfrak{sl}_3 \) if \(|i-j| = 1 \) mod \(n \), \(\mathfrak{sl}_2 \times \mathfrak{sl}_2 \) otherwise.

Fix \(n \geq 3 \). An (infinite) \(n \)-colored directed graph is an \(\hat{\mathfrak{sl}}_n \) crystal if, for each pair of colors \(c_i \) and \(c_j \), the graph consisting of all edges of those 2 colors is an \(\hat{\mathfrak{sl}}_3 \) crystal graph if \(|i-j| = 1 \) mod \(n \), \(\hat{\mathfrak{sl}}_2 \times \mathfrak{sl}_2 \) crystal graph otherwise.
\(\hat{\mathfrak{sl}}_n \) crystals

- \(\hat{\mathfrak{sl}}_n \) (for \(n \geq 3 \)) is the Kac-Moody algebra with dynkin diagram

\[\text{Diagram} \]

\[\text{Diagram} \]

Peter Tingley (MIT) Korea, September 2009 4/14
\(\hat{\mathfrak{sl}}_n \) crystals

- \(\hat{\mathfrak{sl}}_n \) (for \(n \geq 3 \)) is the Kac-Moody algebra with Dynkin diagram

 ![Dynkin diagram](attachment:image.png)

- \(\hat{\mathfrak{sl}}_n \) is (almost) generated by \(\{E_i, F_i\}_{0 \leq i \leq n-1} \) subject to the relations that for each pair \(0 \leq i < j \leq n - 1 \), \(\{E_i, F_i, E_j, F_j\} \) generate a copy of

 \[
 \begin{cases}
 \mathfrak{sl}_3 & \text{if } |i - j| = 1 \text{ mod}(n) \\
 \mathfrak{sl}_2 \times \mathfrak{sl}_2 & \text{otherwise}.
 \end{cases}
 \]
\(\hat{\mathfrak{sl}}_n \) crystals

- \(\hat{\mathfrak{sl}}_n \) (for \(n \geq 3 \)) is the Kac-Moody algebra with dynkin diagram

- \(\hat{\mathfrak{sl}}_n \) is (almost) generated by \(\{E_i, F_i\}_{0 \leq i \leq n-1} \) subject to the relations that for each pair \(0 \leq i < j \leq n - 1 \), \(\{E_i, F_i, E_j, F_j\} \) generate a copy of

\[
\begin{cases}
\mathfrak{sl}_3 & \text{if } |i - j| = 1 \mod (n) \\
\mathfrak{sl}_2 \times \mathfrak{sl}_2 & \text{otherwise.}
\end{cases}
\]

- Fix \(n \geq 3 \). An (infinite) \(n \)-colored directed graph is an \(\hat{\mathfrak{sl}}_n \) crystal if, for each pair of colors \(c_i \) and \(c_j \), the graph consisting of all edges of those 2 colors is

\[
\begin{cases}
\text{An } \mathfrak{sl}_3 \text{ crystal graph if } |i - j| = 1 \mod (n) \\
\text{An } \mathfrak{sl}_2 \times \mathfrak{sl}_2 \text{ crystal graph otherwise.}
\end{cases}
\]
The infinity crystal

There is a crystal B^λ for each dominant weight λ.

$\{B^\lambda\}$ forms a directed system.

The limit of this system is B^∞.

Peter Tingley (MIT)
There is a crystal B_λ for each dominant weight λ.
There is a crystal B_λ for each dominant weight λ.

$\{B_\lambda\}$ forms a directed system.
There is a crystal B_λ for each dominant weight λ.
{\{B_\lambda\}} forms a directed system.
There is a crystal B_λ for each dominant weight λ.

{B_λ} forms a directed system.
There is a crystal B_λ for each dominant weight λ.

- $\{B_\lambda\}$ forms a directed system.
- The limit of this system is B_∞.

$B_{\omega_1+2\omega_2} \cup B_{\omega_1+\omega_2}$
There is a crystal B_λ for each dominant weight λ.

$\{B_\lambda\}$ forms a directed system.

The limit of this system is B_∞.

The infinity crystal
Motivation

Crystals, Characters and Combinatorics

The infinity crystal

- There is a crystal B_λ for each dominant weight λ.
- $\{B_\lambda\}$ forms a directed system.
- The limit of this system is B_∞.
There is a crystal B_λ for each dominant weight λ.
\{ B_λ \} forms a directed system.
The limit of this system is B_∞.
Motivation
What does “understand” mean anyway?

What does “understand” mean anyway?

In order to understand a model I want to:
Explicitly (non-recursively) describe the vertex set.
If it is a family of models for all highest weights, I want to explicitly describe the embeddings $\mathcal{B}(\Lambda) \hookrightarrow \mathcal{B}(\Lambda')$.
Explicitly describe the limit $\mathcal{B}(\infty)$.
What does “understand” mean anyway?

In order to understand a model I want to:

1. Explicitly (non-recursively) describe the vertex set.
2. If it is a family of models for all highest weights, I want to explicitly describe the embeddings $B(\Lambda) \rightarrow B(\Lambda')$.
3. Explicitly describe the limit $B(\infty)$.
What does “understand” mean anyway?

In order to understand a model I want to:

- Explicitly (non-recursively) describe the vertex set.
What does “understand” mean anyway?

In order to understand a model I want to:

- Explicitly (non-recursively) describe the vertex set.
- If it is a family of models for all highest weights, I want to explicitly describe the embeddings $B(\Lambda) \hookrightarrow B(\Lambda')$.
What does “understand” mean anyway?

In order to understand a model I want to:

- Explicitly (non-recursively) describe the vertex set.
- If it is a family of models for all highest weights, I want to explicitly describe the embeddings $B(\Lambda) \hookrightarrow B(\Lambda')$.
- Explicitly describe the limit $B(\infty)$.
What does "understand" mean anyway?

In order to understand a model I want to:

- Explicitly (non-recursively) describe the vertex set.
- If it is a family of models for all highest weights, I want to explicitly describe the embeddings \(B(\Lambda) \hookrightarrow B(\Lambda') \).
- Explicitly describe the limit \(B(\infty) \).
What does “understand" mean anyway?

In order to understand the relationship between two models for $B(\Lambda)$ I want:

* An explicitly description of the unique bijection commuting with the crystal operators
* This description should be "better" than using the crystal operators to get to the highest weight element, then using the crystal operators on the other side to go back down.

"better" here is a bit subjective.
What does “understand” mean anyway?

In order to understand the relationship between two models for $B(\Lambda)$ I want:

- An explicitly description of the unique bijection commuting with the crystal operators
In order to understand the relationship between two models for $B(\Lambda)$ I want:

- An explicitly description of the unique bijection commuting with the crystal operators
- This description should be “better" then using the crystal operators to get to the highest weight element, then using the crystal operators on the other side to go back down.
What does “understand" mean anyway?

In order to understand the relationship between two models for $B(\Lambda)$ I want:

- An explicitly description of the unique bijection commuting with the crystal operators
- This description should be “better" then using the crystal operators to get to the highest weight element, then using the crystal operators on the other side to go back down. “better" here is a bit subjective.
The Misra-Miwa-Hayashi realization of B_{Λ_0} for $\hat{\mathfrak{sl}}_3$
The Misra-Miwa-Hayashi realization of B_{Λ_0} for \(\hat{\mathfrak{sl}}_3 \)

- We define crystal operators on partitions.
We define crystal operators on partitions.
We define crystal operators on partitions. Here $(7, 6, 6, 6, 5, 3, 2)$.
We define crystal operators on partitions. Here $(7, 6, 6, 6, 5, 3, 2)$.

Color the boxes in the partition periodically with $n = 3$ colors.
We define crystal operators on partitions. Here $(7,6,6,6,5,3,2)$.

Color the boxes in the partition periodically with $n = 3$ colors.
The Misra-Miwa-Hayashi realization of B_{Λ_0} for $\hat{\mathfrak{sl}}_3$

- $F_{\tilde{2}}$ adds a $\tilde{2}$ colored box.
The Misra-Miwa-Hayashi realization of B_{Λ_0} for $\hat{\mathfrak{sl}}_3$

\[
\begin{array}{cccccccc}
\bar{2} & 0 & 1 & 2 & 0 & 1 & 2 & 0 \\
0 & 1 & 2 & 0 & 1 & 2 & 0 & 1 \\
2 & 0 & 1 & 2 & 0 & 1 & 2 & 0 \\
1 & 2 & 0 & 1 & 2 & 0 & 1 & 2 \\
0 & 1 & 2 & 0 & 1 & 2 & 0 & 1 \\
2 & 0 & 1 & 2 & 0 & 1 & 2 & 0 \\
1 & 2 & 0 & 1 & 2 & 0 & 1 & 2 \\
0 & 1 & 2 & 0 & 1 & 2 & 0 & 1 \\
\end{array}
\]

- $F_{\bar{2}}$ adds a $\bar{2}$ colored box.
\[F_2 \text{ adds a } \bar{2} \text{ colored box.} \]
The Misra-Miwa-Hayashi realization of B_{Λ_0} for $\widehat{\mathfrak{sl}_3}$

- $F_{\bar{2}}$ adds a $\bar{2}$ colored box.
The Misra-Miwa-Hayashi realization of B_{Λ_0} for $\hat{\mathfrak{sl}}_3$

- $F_{\bar{2}}$ adds a $\bar{2}$ colored box.
The Misra-Miwa-Hayashi realization of B_{Λ_0} for $\hat{\mathfrak{sl}}_3$

- F_2 adds a $\bar{2}$ colored box.

$\bar{2}$ colored box.

Peter Tingley (MIT)
$s \mathfrak{l}_n$ crystals
Korea, September 2009
7 / 14
The Misra-Miwa-Hayashi realization of B_{Λ_0} for \(\widehat{\mathfrak{sl}_3} \)

- $F_{\bar{2}}$ adds a $\bar{2}$ colored box.
The Misra-Miwa-Hayashi realization of B_{Λ_0} for $\hat{\mathfrak{sl}}_3$

- F_2 adds a $\bar{2}$ colored box.

Peter Tingley (MIT)
\mathfrak{sl}_n crystals
Korea, September 2009
Motivation

Two examples

The Misra-Miwa-Hayashi realization of B_{Λ_0} for $\hat{\mathfrak{sl}}_3$

- $F_{\overline{2}}$ adds a $\overline{2}$ colored box.
The Misra-Miwa-Hayashi realization of B_{Λ_0} for $\widehat{\mathfrak{sl}_3}$

- F_2 adds a $\bar{2}$ colored box.
- E_2 would send this partition to 0.
The Misra-Miwa-Hayashi realization of B_{Λ_0} for $\hat{\mathfrak{sl}}_3$
The Misra-Miwa-Hayashi realization of B_{Λ_0} for $\hat{\mathfrak{sl}}_3$

- Every connected is a copy of B_{Λ_0}.

In particular, the subcrystal generated by the empty partition is a model for B_{Λ_0}. This is not enough to "understand" the model. The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of B_{Λ_0} (no 3 rows of same length). Now we can say we understand the model.
Every connected is a copy of B_{Λ_0}. In particular, the subcrystal generated by the empty partition is a model for $B(\Lambda_0)$.
The Misra-Miwa-Hayashi realization of B_{Λ_0} for $\hat{\mathfrak{sl}}_3$

Every connected is a copy of B_{Λ_0}. In particular, the subcrystal generated by the empty partition is a model for $B(\Lambda_0)$.

This is not enough to “understand” the model.
The Misra-Miwa-Hayashi realization of B_{Λ_0} for $\hat{\mathfrak{sl}}_3$

- Every connected is a copy of B_{Λ_0}. In particular, the subcrystal generated by the empty partition is a model for $B(\Lambda_0)$.
- This is not enough to "understand" the model.
- The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of B_{Λ_0}
The Misra-Miwa-Hayashi realization of B_{Λ_0} for $\hat{\mathfrak{sl}}_3$

- Every connected is a copy of B_{Λ_0}. In particular, the subcrystal generated by the empty partition is a model for $B(\Lambda_0)$.
- This is not enough to "understand" the model.
- The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of B_{Λ_0} (no 3 rows of same length).
The Misra-Miwa-Hayashi realization of B_{Λ_0} for $\hat{\mathfrak{sl}}_3$

Not 3 regular

- Every connected is a copy of B_{Λ_0}. In particular, the subcrystal generated by the empty partition is a model for $B(\Lambda_0)$.
- This is not enough to “understand” the model.
- The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of B_{Λ_0} (no 3 rows of same length).
The Misra-Miwa-Hayashi realization of B_{Λ_0} for $\hat{\mathfrak{sl}}_3$

- Every connected is a copy of B_{Λ_0}. In particular, the subcrystal generated by the empty partition is a model for $B(\Lambda_0)$.
- This is not enough to “understand” the model.
- The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of B_{Λ_0} (no 3 rows of same length).

Motivation

Two examples
Every connected is a copy of B_{Λ_0}. In particular, the subcrystal generated by the empty partition is a model for $B(\Lambda_0)$.

This is not enough to “understand” the model.

The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of B_{Λ_0} (no 3 rows of same length).
The Misra-Miwa-Hayashi realization of B_{Λ_0} for $\hat{\mathfrak{sl}}_3$

- Every connected is a copy of B_{Λ_0}. In particular, the subcrystal generated by the empty partition is a model for $B(\Lambda_0)$.
- This is not enough to “understand” the model.
- The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of B_{Λ_0} (no 3 rows of same length).

Now it is 3 regular
Every connected is a copy of B_{Λ_0}. In particular, the subcrystal generated by the empty partition is a model for $B(\Lambda_0)$.

This is not enough to “understand” the model.

The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of B_{Λ_0} (no 3 rows of same length).
The Misra-Miwa-Hayashi realization of B_{Λ_0} for \hat{sl}_3

- Every connected is a copy of B_{Λ_0}. In particular, the subcrystal generated by the empty partition is a model for $B(\Lambda_0)$.
- This is not enough to “understand” the model.
- The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of B_{Λ_0} (no 3 rows of same length).
- Now we can say we understand the model.
Nakajima’s monomial crystal
Consider monomials on variables $Y_{i,k}^\pm, i \in \mathbb{Z}/n\mathbb{Z}, k \in \mathbb{Z}$.
Nakajima’s monomial crystal

Consider monomials on variables $Y^{-1}_{\bar{1},k}, i \in \mathbb{Z}/n\mathbb{Z}, k \in \mathbb{Z}$

\[
Y^{-2}_{1,15}Y_{2,14}Y_{1,13}Y_{0,10}Y_{9,9}Y_{3,9}Y_{7,7}Y_{5,7}Y_{0,4}Y_{1,1}
\]
Motivation

Nakajima’s monomial crystal

\[Y_{\bar{1},15} Y_{\bar{2},14} Y_{\bar{1},13} Y_{0,10} Y_{\bar{1},9} Y_{3,9} Y_{\bar{1},7} Y_{\bar{3},7} Y_{\bar{1},5} Y_{0,4} Y_{\bar{1},1} \]

- Consider monomials on variables \(Y_{\bar{i},k}^{\pm 1} \), \(i \in \mathbb{Z}/n\mathbb{Z} \), \(k \in \mathbb{Z} \) (here \(n = 4 \)).
Nakajima’s monomial crystal

Consider monomials on variables $Y_{i,k}^{\pm 1}$, $i \in \mathbb{Z}/n\mathbb{Z}$, $k \in \mathbb{Z}$ (here $n = 4$).

Define operators E_i and F_i on this set. We show $E\bar{1}$, $F\bar{1}$.

$$Y_{\bar{1},15} Y_{\bar{2},14} Y_{\bar{1},13} Y_{\bar{0},10} Y_{\bar{1},9} Y_{3,9} Y_{\bar{1},7} Y_{3,7} Y_{\bar{1},5} Y_{\bar{0},4} Y_{\bar{1},1}$$
Nakajima’s monomial crystal

\[Y_{\overline{1},15} Y_{\overline{2},14} Y_{\overline{1},13} Y_{\overline{0},10} Y_{\overline{1},9} Y_{3,9} Y_{\overline{1},7} Y_{3,7} Y_{\overline{1},5} Y_{0,4} Y_{\overline{1},1} \]

- Consider monomials on variables \(Y_{i,k}^{\pm 1} \), \(i \in \mathbb{Z}/n\mathbb{Z}, k \in \mathbb{Z} \) (here \(n = 4 \)).
- Define operators \(E_{\overline{i}} \) and \(F_{\overline{i}} \) on this set. We show \(E_{\overline{1}}, F_{\overline{1}} \).
- Put a “(" for every \(Y_{\overline{1},k} \) and a “")" for every \(Y_{\overline{1},k}^{-1} \), ordered left to right by decreasing \(k \).
Nakajima’s monomial crystal

\[
\begin{align*}
Y_{\bar{1},15}Y_{\bar{2},14}Y_{\bar{1},13}Y_{\bar{0},10}Y_{\bar{1},9}Y_{\bar{3},9}Y_{\bar{1},7}Y_{\bar{3},7}Y_{\bar{1},5}Y_{\bar{0},4}Y_{\bar{1},1}
\end{align*}
\]

- Consider monomials on variables \(Y_{\bar{i},k}^{\pm 1}, i \in \mathbb{Z}/n\mathbb{Z}, k \in \mathbb{Z} \) (here \(n = 4 \)).
- Define operators \(E_{\bar{i}} \) and \(F_{\bar{i}} \) on this set. We show \(E_{\bar{1}}, F_{\bar{1}} \).
- Put a "(" for every \(Y_{\bar{i},k} \) and a "\)" for every \(Y_{\bar{i},k}^{-1} \), ordered left to right by decreasing \(k \).
Nakajima’s monomial crystal

Consider monomials on variables $Y_{\bar{1},k}^{\pm 1}$, $i \in \mathbb{Z}/n\mathbb{Z}$, $k \in \mathbb{Z}$ (here $n = 4$).

Define operators $E_{\bar{1}}$ and $F_{\bar{1}}$ on this set. We show $E_{\bar{1}}$, $F_{\bar{1}}$.

Put a “(” for every $Y_{\bar{1},k}$ and a “)” for every $Y_{\bar{1},k}^{-1}$, ordered left to right by decreasing k.
Nakajima’s monomial crystal

\[
\left(\begin{array}{c}
Y_{\bar{1},15} Y_{\bar{2},14} Y_{\bar{1},13} Y_{0,10} Y_{\bar{1},9} Y_{3,9} Y_{\bar{1},7} Y_{3,7} Y_{\bar{1},5} Y_{0,4} Y_{\bar{1},1}
\end{array} \right)
\]

- Consider monomials on variables \(Y_{\bar{i},k}^{\pm 1} \), \(i \in \mathbb{Z}/n\mathbb{Z}, k \in \mathbb{Z} \) (here \(n = 4 \)).
- Define operators \(E_{\bar{i}} \) and \(F_{\bar{i}} \) on this set. We show \(E_{\bar{1}}, F_{\bar{1}} \).
- Put a "(" for every \(Y_{\bar{i},k} \) and a "")" for every \(Y_{\bar{1},k}^{-1} \), ordered left to right by decreasing \(k \).
Nakajima’s monomial crystal

Consider monomials on variables $Y_{i,k}^\pm$, $i \in \mathbb{Z}/n\mathbb{Z}$, $k \in \mathbb{Z}$ (here $n = 4$).
Define operators E_i and F_i on this set. We show $E_{\bar{1}}, F_{\bar{1}}$.
Put a "(" for every $Y_{\bar{1},k}$ and a "")" for every $Y_{\bar{1},k}^{-1}$, ordered left to right by decreasing k.

\[
\begin{pmatrix}
Y_{\bar{1},15} & Y_{\bar{1},13} & Y_{\bar{0},10} & Y_{\bar{1},9} & Y_{\bar{3},9} & Y_{\bar{1},7} & Y_{\bar{3},7} & Y_{\bar{1},5} & Y_{\bar{0},4} & Y_{\bar{1},1}
\end{pmatrix}
\]
Nakajima’s monomial crystal

Consider monomials on variables $Y_{\bar{i},k}^{\pm1}$, $i \in \mathbb{Z}/n\mathbb{Z}$, $k \in \mathbb{Z}$ (here $n = 4$).
Define operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on this set. We show $E_{\bar{1}}$, $F_{\bar{1}}$.
Put a “(" for every $Y_{\bar{1},k}$ and a “")" for every $Y_{\bar{1},k}^{-1}$, ordered left to right by decreasing k.
Nakajima’s monomial crystal

Consider monomials on variables $Y_{\bar{i},k}^\pm$, $\bar{i} \in \mathbb{Z}/n\mathbb{Z}$, $k \in \mathbb{Z}$ (here $n = 4$).

Define operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on this set. We show $E_{\bar{1}}$, $F_{\bar{1}}$.

Put a “(" for every $Y_{\bar{1},k}$ and a “")" for every $Y_{\bar{1},k}^{-1}$, ordered left to right by decreasing k.
Nakajima’s monomial crystal

Consider monomials on variables $Y_{\bar{i},k}^{\pm 1}$, $\bar{i} \in \mathbb{Z}/n\mathbb{Z}$, $k \in \mathbb{Z}$ (here $n = 4$).

Define operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on this set. We show $E_{\bar{1}}, F_{\bar{1}}$.

Put a “(" for every $Y_{\bar{1},k}$ and a “")" for every $Y_{\bar{1},k}^{-1}$, ordered left to right by decreasing k.

$F_{\bar{\bar{1}}}$ multiplies m by $A_{\bar{1},k+1}^{-1} := Y_{\bar{1},k}^{-1} Y_{\bar{1},k+2}^{-1} Y_{0,k+1}^{-1} Y_{2,k+1}$, where the first uncanceled “(" corresponds to a $Y_{\bar{1},k}$.
Motivation

Nakajima’s monomial crystal

\[
\begin{align*}
Y_{\bar{1},15} & Y_{2,14} Y_{\bar{1},13} Y_{0,10} Y_{\bar{1},9} Y_{3,9} Y_{\bar{1},7} Y_{3,7} Y_{\bar{1},5} Y_{0,4} Y_{\bar{1},1} \\
(&) & (&) & (&)
\end{align*}
\]

- Consider monomials on variables \(Y_{i,k}^{\pm 1}, i \in \mathbb{Z}/n\mathbb{Z}, k \in \mathbb{Z} \) (here \(n = 4 \)).
- Define operators \(E_{\bar{i}} \) and \(F_{\bar{i}} \) on this set. We show \(E_{\bar{1}}, F_{\bar{1}} \).
- Put a "(" for every \(Y_{\bar{1},k} \) and a ")" for every \(Y_{\bar{1},k}^{-1} \), ordered left to right by decreasing \(k \).
- \(F_{\bar{1}} \) multiplies \(m \) by \(A_{\bar{1},k+1}^{-1} := Y_{\bar{1},k}^{-1} Y_{\bar{1},k+2}^{-1} Y_{0,k+1}^{-1} Y_{2,k+1}^{-1} \), where the first uncanceled "(" corresponds to a \(Y_{\bar{1},k} \). Or sends \(m \) to 0 if there is no uncanceled "")".
Nakajima’s monomial crystal

\[
\begin{pmatrix}
Y^{-1}_{1,15} & Y_{2,14}^{-1} & Y_{1,13}^{-2} & Y_{0,10} & Y_{1,9}^{-1} & Y_{3,9} & Y_{1,7}^{-1} & Y_{3,7}^{-1} & Y_{1,5}^{-1} & Y_{0,4}^{-1} & Y_{1,1}^{-1} \\
\end{pmatrix}
\]

- Consider monomials on variables \(Y_{i,k}^{\pm 1}, i \in \mathbb{Z}/n\mathbb{Z}, k \in \mathbb{Z}\) (here \(n = 4\)).
- Define operators \(E_{\bar{i}}\) and \(F_{\bar{i}}\) on this set. We show \(E_{\bar{1}}, F_{\bar{1}}\).
- Put a "(" for every \(Y_{1,k}\) and a "")" for every \(Y_{1,k}^{-1}\), ordered left to right by decreasing \(k\).
- \(F_{\bar{1}}\) multiplies \(m\) by \(A_{\bar{1},k+1}^{-1} := Y_{1,k}^{-1}Y_{1,k+2}^{-1}Y_{0,k+1}^{-1}Y_{2,k+1}^{-1}\), where the first uncanceled "(" corresponds to a \(Y_{1,k}\). Or sends \(m\) to 0 if there is no uncanceled "")".
- \(F_{\bar{1}}\) multiplies \(m\) by \(A_{\bar{1},k-1}^{-1} := Y_{1,k-2}^{-1}Y_{1,k}^{-1}Y_{0,k-1}^{-1}Y_{2,k-1}^{-1}\), where the first uncanceled "")" corresponds to a \(Y_{1,k}^{-1}\).
Nakajima’s monomial crystal

\[
\begin{pmatrix}
Y_{\bar{1},15} & Y_{2,14} & Y_{\bar{1},13} & Y_{0,10} & Y_{\bar{1},9} & Y_{3,9} & Y_{\bar{1},7} & Y_{3,7} & Y_{\bar{1},5} & Y_{0,4} & Y_{\bar{1},1}
\end{pmatrix}
\]
Nakajima’s monomial crystal

\[
\begin{array}{c}
(\quad)
\end{array}
\quad
\begin{array}{c}
(\quad)
\end{array}

\begin{array}{c}
Y_{1,15} Y_{2,14} Y_{-2} Y_{0,10} Y_{9} Y_{3,9} Y_{1,7} Y_{-1} Y_{3,7} Y_{5,1} Y_{-1} Y_{0,4} Y_{1,1}
\end{array}

\begin{array}{c}
F_{1}
\end{array}
\]
Nakajima’s monomial crystal

\[
\begin{array}{c}
\left(\begin{array}{c}
Y_{\bar{1},15}
\end{array} \right) \ast \left(\begin{array}{c}
Y_{\bar{2},14}
\end{array} \right) \left(\begin{array}{c}
Y_{0,10}
\end{array} \right) \left(\begin{array}{c}
Y_{\bar{9},3,9}
\end{array} \right) \left(\begin{array}{c}
Y_{\bar{7},3,7}
\end{array} \right) \left(\begin{array}{c}
Y_{\bar{5},0,4}
\end{array} \right) \left(\begin{array}{c}
Y_{\bar{1},1}
\end{array} \right)
\end{array}
\]

\[
F_{\bar{1}}
\]
Nakajima’s monomial crystal

\[
\begin{pmatrix}
 Y^{-1}_{\bar{1},15} & Y^{-2}_{2,14} & Y^{-2}_{\bar{1},13} & Y_{0,10} & Y_{\bar{1},9} & Y_{3,9} & Y_{\bar{3},7} & Y_{\bar{1},5} & Y_{0,4} & Y_{\bar{1},1}
\end{pmatrix}
\]

\[
F_{\bar{1}}
\]

\[
\begin{pmatrix}
 A^{-1}_{\bar{1},10} & Y_{\bar{1},15} & Y^{-2}_{2,14} & Y_{\bar{1},13} & Y_{0,10} & Y_{\bar{1},9} & Y_{3,9} & Y_{\bar{1},7} & Y_{3,7} & Y_{\bar{1},5} & Y_{0,4} & Y_{\bar{1},1}
\end{pmatrix}
\]
Nakajima’s monomial crystal

\[
\begin{array}{c}
\begin{pmatrix}
Y_{1,15} & Y_{2,14} & Y_{\bar{1},13} & Y_{\bar{0},10} & Y_{\bar{1},9} & Y_{3,9} & Y_{\bar{1},7} & Y_{3,7} & Y_{\bar{1},5} & Y_{\bar{0},4} & Y_{\bar{1},1}
\end{pmatrix}
\end{array}
\]

\[
\begin{array}{c}
\begin{pmatrix}
A^{-1}_{1,10} & Y_{\bar{1},15} & Y_{2,14} & Y_{\bar{1},13} & Y_{\bar{0},10} & Y_{\bar{1},9} & Y_{3,9} & Y_{\bar{1},7} & Y_{3,7} & Y_{\bar{1},5} & Y_{\bar{0},4} & Y_{\bar{1},1}
\end{pmatrix}
\end{array}
\]

\[
F_{\bar{1}}
\]

\[
\begin{array}{c}
| | | |
\end{array}
\]
Nakajima’s monomial crystal

\[(\quad) \quad * \quad (\quad) \quad (\quad) \quad (\quad) \quad (\quad) \quad \]

\[
\begin{align*}
Y_{1,15} & Y_{2,14} Y_{0,10} Y_{1,9} Y_{3,9} Y_{1,7} Y_{3,7} Y_{1,5} Y_{0,4} Y_{1,1} \\
\end{align*}
\]

\[
\begin{align*}
F_{1} \\
A_{1,10}^{-1} Y_{1,15} Y_{2,14} Y_{0,10} Y_{1,9} Y_{3,9} Y_{1,7} Y_{3,7} Y_{1,5} Y_{0,4} Y_{1,1} \\
\end{align*}
\]

\[
\begin{align*}
Y_{1,9} Y_{1,11} Y_{0,10} Y_{2,10} Y_{1,15} Y_{2,14} Y_{0,10} Y_{1,9} Y_{3,9} Y_{1,7} Y_{3,7} Y_{1,5} Y_{0,4} Y_{1,1} \\
\end{align*}
\]
Nakajima’s monomial crystal

\[
(\quad) \quad \quad (\quad)
\]

\[
Y_{\bar{1},15} Y_{\bar{2},14} Y_{\bar{0},10} Y_{\bar{1},9} Y_{\bar{3},9} Y_{\bar{1},7} Y_{\bar{3},7} Y_{\bar{1},5} Y_{0,4} Y_{\bar{1},1}
\]

\[
F_{\bar{1}}
\]

\[
A_{\bar{1},10}^{-1} Y_{\bar{1},15} Y_{\bar{2},14} Y_{\bar{0},10} Y_{\bar{1},9} Y_{\bar{3},9} Y_{\bar{3},7} Y_{\bar{1},5} Y_{0,4} Y_{\bar{1},1}
\]

\[
Y_{\bar{1},9} Y_{\bar{1},11} Y_{0,10} Y_{\bar{2},10} Y_{\bar{1},15} Y_{\bar{2},14} Y_{\bar{0},10} Y_{\bar{1},9} Y_{\bar{3},9} Y_{\bar{1},7} Y_{\bar{3},7} Y_{\bar{1},5} Y_{0,4} Y_{\bar{1},1}
\]
Motivation

Two examples

Nakajima’s monomial crystal

\[
\begin{array}{c}
\begin{array}{c}
() \quad () \quad \ast \quad () \quad () \\
Y_{\bar{1},15}Y_{\bar{2},14}Y_{\bar{2},14}Y_{\bar{2},14}Y_{\bar{1},13}Y_{0,10}Y_{\bar{1},9}Y_{3,9}Y_{\bar{3},7}Y_{\bar{3},7}Y_{\bar{1},5}Y_{0,4}Y_{\bar{1},1}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
F_{\bar{1}}
\end{array}
\]

\[
\begin{array}{c}
A_{\bar{1},10}^{-1}Y_{\bar{1},15}Y_{\bar{2},14}Y_{\bar{2},14}Y_{\bar{2},14}Y_{\bar{1},13}Y_{0,10}Y_{\bar{1},9}Y_{3,9}Y_{\bar{3},7}Y_{\bar{3},7}Y_{\bar{1},5}Y_{0,4}Y_{\bar{1},1}
\end{array}
\]

\[
\begin{array}{c}
Y_{\bar{1},9}Y_{\bar{1},11}Y_{0,10}Y_{\bar{2},10}Y_{\bar{1},15}Y_{\bar{2},14}Y_{\bar{2},14}Y_{\bar{1},13}Y_{0,10}Y_{\bar{1},9}Y_{3,9}Y_{\bar{3},7}Y_{\bar{3},7}Y_{\bar{1},5}Y_{0,4}Y_{\bar{1},1}
\end{array}
\]

\[
\begin{array}{c}
Y_{\bar{1},15}Y_{\bar{2},14}Y_{\bar{2},14}Y_{\bar{2},14}Y_{\bar{1},13}Y_{\bar{1},11}Y_{0,10}Y_{\bar{2},10}Y_{\bar{3},9}Y_{\bar{1},7}Y_{\bar{3},7}Y_{\bar{1},5}Y_{0,4}Y_{\bar{1},1}
\end{array}
\]
Nakajima’s monomial crystal

\[
\begin{pmatrix}
Y_{\bar{1},15} & Y_{\bar{2},14} & Y_{\bar{0},10} & Y_{\bar{1},9} & Y_{\bar{3},9} & Y_{\bar{1},7} & Y_{\bar{3},7} & Y_{\bar{1},5} & Y_{\bar{0},4} & Y_{\bar{1},1}
\end{pmatrix}
\]

- The component generated by a dominant monomial is a highest weight crystal
Nakajima’s monomial crystal

\[
(\phantom{\text{\textbullet}}) \quad (\phantom{\text{\textbullet}}) \quad (\phantom{\text{\textbullet}}) \quad (\phantom{\text{\textbullet}}) \quad (\phantom{\text{\textbullet}})
\]

\[
Y_{\bar{1},15} Y_{\bar{2},14} Y_{\bar{1},13} Y_{0,10} Y_{\bar{1},9} Y_{3,9} Y_{\bar{1},7} Y_{3,7} Y_{\bar{1},5} Y_{0,4} Y_{\bar{1},1}
\]

- The component generated by a dominant monomial is a highest weight crystal (provided \(n \) is even, and some parity conditions hold).
Nakajima’s monomial crystal

The component generated by a dominant monomial is a highest weight crystal (provided \(n \) is even, and some parity conditions hold). CAUTION: other components are not all crystals.
Nakajima’s monomial crystal

\[
\begin{pmatrix}
Y_{\bar{1},15} & Y_{2,14} & Y_{\bar{1},13} & Y_{0,10} & Y_{\bar{1},9} & Y_{\bar{3},9} & Y_{\bar{1},7} & Y_{\bar{3},7} & Y_{\bar{1},5} & Y_{0,4} & Y_{\bar{1},1}
\end{pmatrix}
\]

- The component generated by a dominant monomial is a highest weight crystal (provided \(n \) is even, and some parity conditions hold).

CAUTION: other components are not all crystals. Hernandez and Nakajima have described some other components that are crystals.
Nakajima’s monomial crystal

The component generated by a dominant monomial is a highest weight crystal (provided \(n\) is even, and some parity conditions hold).
CAUTION: other components are not all crystals
Hernandez and Nakajima have described some other components that are crystals.

In particular, the component generated by \(Y_{0,0}\) is a copy of \(B(\Lambda_0)\).
Nakajima’s monomial crystal

\[
\left(\begin{array}{c}
Y_{\bar{1},15}^1 \quad Y_{\bar{1},13}^{-2} \quad Y_{\bar{0},10}^{-1} \quad Y_{\bar{1},9} \quad Y_{\bar{3},9} \quad Y_{\bar{1},7} \quad Y_{\bar{3},7}^{-1} \quad Y_{\bar{1},5}^{-1} \quad Y_{\bar{0},4}^{-1} \quad Y_{\bar{1},1}^{-1}
\end{array}\right)
\]

- The component generated by a dominant monomial is a highest weight crystal (provided \(n \) is even, and some parity conditions hold). CAUTION: other components are not all crystals. Hernandez and Nakajima have described some other components that are crystals.
- In particular, the component generated by \(Y_{\bar{0},0} \) is a copy of \(B(\Lambda_0) \). This holds for ALL \(n \geq 3 \).
Nakajima’s monomial crystal

\[
\begin{pmatrix}
Y_{\bar{1},15} & Y_{\bar{2},14} & Y_{\bar{1},13} & Y_{\bar{0},10} & Y_{\bar{1},9} & Y_{\bar{3},9} & Y_{\bar{1},7} & Y_{\bar{3},7} & Y_{\bar{1},5} & Y_{\bar{0},4} & Y_{\bar{1},1}
\end{pmatrix}
\]

- The component generated by a dominant monomial is a highest weight crystal (provided \(n \) is even, and some parity conditions hold). CAUTION: other components are not all crystals. Hernandez and Nakajima have described some other components that are crystals.

- In particular, the component generated by \(Y_{0,0} \) is a copy of \(B(\Lambda_0) \). This holds for ALL \(n \geq 3 \).

- I do not understand this crystal, since I do not know a good rule for checking if a given monomial is in \(B(\Lambda_0) \).
Nakajima’s monomial crystal

\[
\begin{pmatrix}
Y_{\bar{1},15} & Y_{\bar{2},14} & Y_{\bar{1},13} & Y_{0,10} & Y_{\bar{3},9} & Y_{\bar{1},7} & Y_{\bar{3},7} & Y_{\bar{1},5} & Y_{0,4} & Y_{\bar{1},1}
\end{pmatrix}
\]

- The component generated by a dominant monomial is a highest weight crystal (provided \(n \) is even, and some parity conditions hold). \textbf{CAUTION:} other components are not all crystals. Hernandez and Nakajima have described some other components that are crystals.

- In particular, the component generated by \(Y_{\bar{0},0} \) is a copy of \(B(\Lambda_0) \). This holds for \textbf{ALL} \(n \geq 3 \).

- I do not understand this crystal, since I do not know a good rule for checking if a given monomial is in \(B(\Lambda_0) \).

- I also do not know an explicit isomorphism with the Misra-Miwa model.
Nakajima’s monomial crystal

\[
\begin{array}{ccccccc}
Y_{\bar{1},15} & Y_{2,14} & Y_{\bar{1},13} & Y_{0,10} & Y_{3,9} & Y_{\bar{1},7} & Y_{\bar{3},7} & Y_{\bar{1},5} & Y_{0,4} & Y_{\bar{1},1}
\end{array}
\]

- The component generated by a dominant monomial is a highest weight crystal (provided \(n \) is even, and some parity conditions hold). CAUTION: other components are not all crystals. Hernandez and Nakajima have described some other components that are crystals.

- In particular, the component generated by \(Y_{0,0} \) is a copy of \(B(\Lambda_0) \). This holds for ALL \(n \geq 3 \).

- I do not understand this crystal, since I do not know a good rule for checking if a given monomial is in \(B(\Lambda_0) \).

- I also do not know an explicit isomorphism with the Misra-Miwa model.

- I do know an explicit isomorphism with modification of the Misra-Miwa model due to Fayers.
Nakajima’s monomial crystal

\[
\begin{pmatrix}
Y_{1,15} & Y_{2,14} & Y_{-1,13} & Y_{0,10} & Y_{9,9} & Y_{7,9} & Y_{-1,7} & Y_{3,7} & Y_{-1,5} & Y_{0,4} & Y_{1,1}
\end{pmatrix}
\]

- The component generated by a dominant monomial is a highest weight crystal (provided \(n \) is even, and some parity conditions hold). CAUTION: other components are not all crystals. Hernandez and Nakajima have described some other components that are crystals.
- In particular, the component generated by \(Y_{0,0} \) is a copy of \(B(\Lambda_0) \). This holds for ALL \(n \geq 3 \).
- I do not understand this crystal, since I do not know a good rule for checking if a given monomial is in \(B(\Lambda_0) \).
- I also do not know an explicit isomorphism with the Misra-Miwa model.
- I do know an explicit isomorphism with modification of the Misra-Miwa model due to Fayers. I’ll mention this at the end.
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- For $\ell = 4$, use 4-tuples of charged partitions.
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- For $\ell = 4$, use 4-tuples of charged partitions.
For \(\ell = 4 \), use 4-tuples of charged partitions. The charge is a residue mod \(n = 3 \), which is the color of the vertex of the partition.
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

For $\ell = 4$, use 4-tuples of charged partitions. The charge is a residue mod $n = 3$, which is the color of the vertex of the partition. We choose the multi-charge $(\bar{0}, \bar{1}, \bar{1}, \bar{2})$.
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

For $\ell = 4$, use 4-tuples of charged partitions. The charge is a residue mod $n = 3$, which is the color of the vertex of the partition. We choose the multi-charge $(\bar{0}, \bar{1}, \bar{1}, \bar{2})$.
For $\ell = 4$, use 4-tuples of charged partitions. The charge is a residue mod $n = 3$, which is the color of the vertex of the partition. We choose the multi-charge ($\bar{0}, \bar{1}, \bar{1}, \bar{2}$).
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

For $\ell = 4$, use 4-tuples of charged partitions. The charge is a residue mod $n = 3$, which is the color of the vertex of the partition. We choose the multi-charge $(\bar{0}, \bar{1}, \bar{1}, \bar{2})$.
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- For $\ell = 4$, use 4-tuples of charged partitions. The charge is a residue mod $n = 3$, which is the color of the vertex of the partition. We choose the multi-charge $(\overline{0}, \overline{1}, \overline{1}, \overline{2})$.

\[\lambda^{(0)} \quad \lambda^{(1)} \quad \lambda^{(2)} \quad \lambda^{(3)} \]
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

For $\ell = 4$, use 4-tuples of charged partitions. The charge is a residue mod $n = 3$, which is the color of the vertex of the partition. We choose the multi-charge ($\bar{0}, \bar{1}, \bar{1}, \bar{2}$). These must satisfy a “shifted containment" condition.
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

For $\ell = 4$, use 4-tuples of charged partitions. The charge is a residue mod $n = 3$, which is the color of the vertex of the partition. We choose the multi-charge $(\bar{0}, \bar{1}, \bar{1}, \bar{2})$. These must satisfy a “shifted containment" condition.
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- For $\ell = 4$, use 4-tuples of charged partitions. The charge is a residue mod $n = 3$, which is the color of the vertex of the partition. We choose the multi-charge $(0, 1, \bar{1}, \bar{2})$. These must satisfy a “shifted containment" condition.
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

For $\ell = 4$, use 4-tuples of charged partitions. The charge is a residue mod $n = 3$, which is the color of the vertex of the partition. We choose the multi-charge $(\bar{0}, 1, \bar{1}, \bar{2})$. These must satisfy a “shifted containment" condition.
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- For $\ell = 4$, use 4-tuples of charged partitions. The charge is a residue mod $n = 3$, which is the color of the vertex of the partition. We choose the multi-charge ($\bar{0}, \bar{1}, \bar{1}, \bar{2}$). These must satisfy a “shifted containment” condition.
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

For $\ell = 4$, use 4-tuples of charged partitions. The charge is a residue mod $n = 3$, which is the color of the vertex of the partition. We choose the multi-charge ($\bar{0}, \bar{1}, \bar{1}, \bar{2}$). These must satisfy a “shifted containment" condition.
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

For $\ell = 4$, use 4-tuples of charged partitions. The charge is a residue mod $n = 3$, which is the color of the vertex of the partition. We choose the multi-charge $(\vec{0}, \vec{1}, \vec{1}, \vec{2})$. These must satisfy a “shifted containment" condition.
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- For $\ell = 4$, use 4-tuples of charged partitions. The charge is a residue mod $n = 3$, which is the color of the vertex of the partition. We choose the multi-charge $(\bar{0}, \bar{1}, \bar{1}, 2)$. These must satisfy a “shifted containment" condition.
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- For $\ell = 4$, use 4-tuples of charged partitions. The charge is a residue mod $n = 3$, which is the color of the vertex of the partition. We choose the multi-charge ($\bar{0}, \bar{1}, \bar{1}, \bar{2}$). These must satisfy a “shifted containment" condition.
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- $\lambda^{(0)}$
- $\lambda^{(1)}$
- $\lambda^{(2)}$
- $\lambda^{(3)}$

- Again F_0 will add a box colored $\bar{0}$.

The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- Again F_0 will add a box colored $\overline{0}$.
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- Again F_0 will add a box colored $\bar{0}$.
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
Some structures I understand

The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- Again F_0 will add a box colored $\bar{0}$.
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

Some structures I understand

- $\lambda^{(0)}$
 - Again F_0 will add a box colored $\bar{0}$.

- $\lambda^{(1)}$
 - Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

Some structures I understand

- Again F_0 will add a box colored $\bar{0}$.
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- Again F_0 will add a box colored $\bar{0}$.
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

Some structures I understand

- $\lambda^{(0)}$
- $\lambda^{(1)}$
- $\lambda^{(2)}$
- $\lambda^{(3)}$

- Again F_0 will add a box colored $\bar{0}$.
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- Again F_0 will add a box colored $\bar{0}$.
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- Again F_0 will add a box colored $\bar{0}$.
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

Some structures I understand

- Again F_0 will add a box colored 0.
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".

\[\lambda^{(0)} \]
\[\lambda^{(1)} \]
\[\lambda^{(2)} \]
\[\lambda^{(3)} \]
Some structures I understand

The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- Again F_0 will add a box colored 0.
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- Again F_0 will add a box colored $\bar{0}$.
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
- The brackets are reordered appropriately, and F_0 adds the box corresponding to the first uncanceled "(".
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- Again F_0 will add a box colored $\bar{0}$.
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
- The brackets are reordered appropriately, and F_0 adds the box corresponding to the first uncanceled "(".
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- Again F_0 will add a box colored $\bar{0}$.
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
- The brackets are reordered appropriately, and F_0 adds the box corresponding to the first uncanceled "(".
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- Again F_0 will add a box colored $\bar{0}$.
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
- The brackets are reordered appropriately, and F_0 adds the box corresponding to the first uncanceled "(").
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- Again F_0 will add a box colored $\bar{0}$.
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
- The brackets are reordered appropriately, and F_0 adds the box corresponding to the first uncanceled "(".

$$
\lambda^{(0)} = 3 \quad 0 \quad -3
$$

$$
\lambda^{(1)} = 3 \quad 0 \quad -3
$$

$$
\lambda^{(2)} = 3 \quad 0 \quad -3 \quad 6
$$

$$
\lambda^{(3)} = 3 \quad 0 \quad -3 \quad 6
$$
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- Again F_0 will add a box colored $\bar{0}$.
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
- The brackets are reordered appropriately, and F_0 adds the box corresponding to the first uncanceled "(".
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- Again F_0 will add a box colored $\bar{0}$.
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
- The brackets are reordered appropriately, and F_0 adds the box corresponding to the first uncanceled "(".
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

Some structures I understand

- Again F_0 will add a box colored $\bar{0}$.
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
- The brackets are reordered appropriately, and F_0 adds the box corresponding to the first uncanceled "(".
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- Again F_0 will add a box colored $\bar{0}$.
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
- The brackets are reordered appropriately, and F_0 adds the box corresponding to the first uncanceled "(".
The multi-partition realization of \(B(\Lambda) \) (JMMO, FLOTW)

- Again \(F_0 \) will add a box colored \(\bar{0} \).
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
- The brackets are reordered appropriately, and \(F_0 \) adds the box corresponding to the first uncanceled "(".
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- Again F_0 will add a box colored $\overline{0}$.
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
- The brackets are reordered appropriately, and F_0 adds the box corresponding to the first uncanceled "(".
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- Again F_0 will add a box colored $\bar{0}$.
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
- The brackets are reordered appropriately, and F_0 adds the box corresponding to the first uncanceled "(".
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- $\Lambda = \Lambda^0 + \Lambda^1 + \Lambda^2 + \Lambda^3$

- Again F_0 will add a box colored $\bar{0}$.
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
- The brackets are reordered appropriately, and F_0 adds the box corresponding to the first uncanceled "(".
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- Some structures I understand

- Again F_0 will add a box colored $\bar{0}$.
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
- The brackets are reordered appropriately, and F_0 adds the box corresponding to the first uncanceled "(".
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- Again F_0 will add a box colored $\bar{0}$.
- Again places you can add a box are labeled "(" and places you can remove a box are labeled ")".
- The brackets are reordered appropriately, and F_0 adds the box corresponding to the first uncanceled "(".
Some structures I understand

The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)
Every connected component is a copy of B_Λ.
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

$\Lambda = \Lambda_0 + 2\Lambda_1 + \Lambda_2$

Every connected component is a copy of B_Λ.

Some structures I understand
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

$\Lambda = \Lambda_0 + 2\Lambda_1 + \Lambda_2$

- Every connected component is a copy of B_Λ.
- The "3-regular" multi-partitions form a single copy of B_Λ.
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

Every connected component is a copy of B_Λ.

The “3-regular” multi-partitions form a single copy of B_Λ.

3-regular means no three differently colored rows have the same length.
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

$\Lambda = \Lambda_0 + 2\Lambda_1 + \Lambda_2$

- Every connected component is a copy of B_Λ.
- The “3-regular” multi-partitions form a single copy of B_Λ.
- 3-regular means no three differently colored rows have the same length.
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

$\Lambda = \Lambda_0 + 2\Lambda_1 + \Lambda_2$

- Every connected component is a copy of B_Λ.
- The “3-regular” multi-partitions form a single copy of B_Λ.
- 3-regular means no three differently colored rows have the same length.
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

$\Lambda = \Lambda_0 + 2\Lambda_1 + \Lambda_2$

- Every connected component is a copy of B_{Λ}.
- The “3-regular" multi-partitions form a single copy of B_{Λ}.
- 3-regular means no three differently colored rows have the same length.
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

- Every connected component is a copy of B_Λ.
- The "3-regular" multi-partitions form a single copy of B_Λ.
- 3-regular means no three differently colored rows have the same length. Our example is not 3-regular.

$\Lambda = \Lambda_0 + 2\Lambda_1 + \Lambda_2$
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

\[\Lambda = \Lambda_0 + 2\Lambda_1 + \Lambda_2 \]

- Every connected component is a copy of B_Λ.
- The “3-regular" multi-partitions form a single copy of B_Λ.
- 3-regular means no three differently colored rows have the same length.
 Our example is not 3-regular.
The multi-partition realization of $B(\Lambda)$ (JMMO, FLOTW)

Every connected component is a copy of B_Λ.
The "3-regular" multi-partitions form a single copy of B_Λ.
3-regular means no three differently colored rows have the same length.
Our example is not 3-regular.
I would say we do understand this model for $B(\Lambda)$.
Understanding embeddings and $B(\infty)$
An ℓ-tuple of partitions satisfying the shifted containment conditions fits together into a three dimensional picture called a “cylindric partition".
An ℓ-tuple of partitions satisfying the shifted containment conditions fits together into a three dimensional picture called a "cylindric partition".

Consider $n = 3$, $\ell = 2$, and multi-charge $(0, 1)$.
Understanding embeddings and $B(\infty)$
Some structures I understand
Understanding the infinity crystal

Understanding embeddings and $B(\infty)$
Understanding embeddings and $B(\infty)$
Some structures I understand

Understanding the infinity crystal

Understanding embeddings and $B(\infty)$

Some structures I understand

Understanding the infinity crystal
Understanding embeddings and $B(\infty)$
Understanding embeddings and $B(\infty)$

A “multi-segment” ℓ-tuple of partitions satisfying the shifted containment conditions fits together into a three dimensional picture called a “cylindric partition”. Consider $n = 3$, $\ell = 2$, and multi-charge $(-\bar{0}, -\bar{1})$.

A cylindric partition is in $B(\Lambda)$ if and only if it does not have three differently colored piles of the same height.

To understand the embedding $B(\Lambda_0 + \Lambda_1) \hookrightarrow B(2\Lambda_1 + \Lambda_1)$, consider the “dual” n-tuple of partitions. Just shift the cylindric partition so that this dual n-tuple does not change.

For $B(\infty)$, just record the vertical piles, not the arrangement into an ℓ-tuple of partitions.
Some structures I understand

Understanding the infinity crystal

Understanding embeddings and $B(\infty)$
Understanding embeddings and $B(\infty)$

A "multi-segment" ℓ-tuple of partitions satisfying the shifted containment conditions fits together into a three dimensional picture called a "cylindric partition". Consider $n=3$, $\ell=2$, and multi-charge $(\bar{0}, \bar{1})$. A cylindric partition is in $B(\Lambda)$ if and only if it does not have three differently colored piles of the same height. To understand the embedding $B(\Lambda_0 + \Lambda_1) \hookrightarrow B(2\Lambda_1 + \Lambda_1)$, consider the "dual" n-tuple of partitions. Just shift the cylindric partition so that this dual n-tuple does not change. For $B(\infty)$, just record the vertical piles, not the arrangement into an ℓ-tuple of partitions.
Understanding embeddings and $B(\infty)$
Understanding embeddings and $B(\infty)$
Understanding embeddings and $B(\infty)$
Understanding embeddings and $B(\infty)$
A cylindric partition is in $B(\Lambda)$ if and only if it does not have three differently colored piles of the same height.
Understanding embeddings and \(B(\infty) \)
Understanding embeddings and $B(\infty)$

- To understand the embedding $B(\Lambda_0 + \Lambda_1) \hookrightarrow B(2\Lambda_1 + \Lambda_1)$, consider the “dual” n tuple of partitions.
To understand the embedding $B(\Lambda_0 + \Lambda_1) \hookrightarrow B(2\Lambda_1 + \Lambda_1)$, consider the “dual" n tuple of partitions.
Understanding embeddings and $B(\infty)$

- To understand the embedding $B(\Lambda_0 + \Lambda_1) \hookrightarrow B(2\Lambda_1 + \Lambda_1)$, consider the "dual" n tuple of partitions.
To understand the embedding $B(\Lambda_0 + \Lambda_1) \hookrightarrow B(2\Lambda_1 + \Lambda_1)$, consider the “dual" n tuple of partitions.
Understanding embeddings and $B(\infty)$
Understanding embeddings and $B(\infty)$

- Just shift the cylindric partition so that this dual n-tuple does not change.
Understanding embeddings and $B(\infty)$

- Just shift the cylindric partition so that this dual n-tuple does not change.
Some structures I understand

Understanding the infinity crystal

Understanding embeddings and $B(\infty)$

A "multi-segment" ℓ-tuple of partitions satisfying the shifted containment conditions fits together into a three dimensional picture called a "cylindric partition".

Consider $n=3$, $\ell=2$, and multi-charge $\bar{\bar{0}}, \bar{\bar{1}}$.

A cylindric partition is in $B(\Lambda)$ if and only if it does not have three differently colored piles of the same height.

To understand the embedding $B(\Lambda_0+\Lambda_1) \hookrightarrow B(2\Lambda_1+\Lambda_1)$, consider the "dual" n-tuple of partitions.

Just shift the cylindric partition so that this dual n-tuple does not change.

For $B(\infty)$, just record the vertical piles, not the arrangement into an ℓ-tuple of partitions.
Understanding embeddings and $B(\infty)$
Some structures I understand

Understanding the infinity crystal

Understanding embeddings and $B(\infty)$

- For $B(\infty)$, just record the vertical piles, not the arrangement into an ℓ-tuple of partitions.
Understanding embeddings and $B(\infty)$
Some structures I understand

Understanding the infinity crystal

Understanding embeddings and $B(\infty)$
Some structures I understand

Understanding the infinity crystal

Understanding embeddings and $B(\infty)$
Understanding embeddings and $B(\infty)$
Some structures I understand

Understanding the infinity crystal

Understanding embeddings and $B(\infty)$

A "multi-segment" ℓ-tuple of partitions satisfying the shifted containment conditions fits together into a three dimensional picture called a "cylindric partition". Consider $n = 3$, $\ell = 2$, and multicharge $(\bar{0}, \bar{1})$. A cylindric partition is in $B(\Lambda)$ if and only if it does not have three differently colored piles of the same height. To understand the embedding $B(\Lambda_0 + \Lambda_1) \hookrightarrow B(2\Lambda_1 + \Lambda_1)$, consider the "dual" n-tuple of partitions. Just shift the cylindric partition so that this dual n-tuple does not change. For $B(\infty)$, just record the vertical piles, not the arrangement into an ℓ-tuple of partitions.
Understanding embeddings and $B(\infty)$
Some structures I understand

Understanding the infinity crystal

Understanding embeddings and $B(\infty)$

A "multi-segment"
Relation to the Kyoto path model

[Diagram showing a structure related to the Kyoto path model]
Relation to the Kyoto path model
Relation to the Kyoto path model
Relation to the Kyoto path model

\[
\begin{array}{c|c|c|c|c|c|c}
\hline
& 1 & 2 & 1 & 1 & 0 & 1 \\
\hline
\end{array}
\]
Relation to the Kyoto path model

![Diagram of crystal structures]

Some structures I understand

Relationship with the Kyoto path model
Relation to the Kyoto path model
Relation to the Kyoto path model
Relation to the Kyoto path model

Some structures I understand

Relationship with the Kyoto path model

Peter Tingley (MIT)
Relation to the Kyoto path model
Relation to the Kyoto path model

\[\cdots 1 \bar{2} \quad \otimes \quad \bar{0} \quad 1 \quad \otimes \quad \bar{0} \quad 2 \quad \otimes \quad \bar{1} \quad \bar{2} \quad \otimes \quad \bar{1} \quad \bar{2} \quad \otimes \quad 1 \quad 1 \quad \otimes \quad \bar{0} \quad 1 \]

Peter Tingley (MIT)
The “horizontal" crystal
The “horizontal" crystal

Define new operators E_i and F_i on the set of partitions.
Define new operators E_i and F_i on the set of partitions.
Define new operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on the set of partitions.

for $\bar{i} = \bar{2}$, construct a string of brackets as before, but ordered lexicographically by height, then right to left.
The “horizontal" crystal

- Define new operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on the set of partitions.
- for $\bar{i} = \bar{2}$, construct a string of brackets as before, but ordered lexicographically by height, then right to left.
Define new operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on the set of partitions.

for $\bar{i} = \bar{2}$, construct a string of brackets as before, but ordered lexicographically by height, then right to left.
Define new operators $E_{\tilde{i}}$ and $F_{\tilde{i}}$ on the set of partitions.

for $\tilde{i} = \tilde{2}$, construct a string of brackets as before, but ordered lexicographically by height, then right to left.
The "horizontal" crystal

- Define new operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on the set of partitions.
- for $\bar{i} = \bar{2}$, construct a string of brackets as before, but ordered lexicographically by height, then right to left.
Define new operators $E_{\vec{i}}$ and $F_{\vec{i}}$ on the set of partitions.

for $\vec{i} = \vec{2}$, construct a string of brackets as before, but ordered lexicographically by height, then right to left.
The “horizontal" crystal

- Define new operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on the set of partitions.
- for $\bar{i} = \bar{2}$, construct a string of brackets as before, but ordered lexicographically by height, then right to left.
The “horizontal” crystal

Define new operators E_i and F_i on the set of partitions.

for $\bar{i} = \bar{2}$, construct a string of brackets as before, but ordered lexicographically by height, then right to left.
The “horizontal” crystal

- Define new operators $E_{\bar{\imath}}$ and $F_{\bar{\imath}}$ on the set of partitions.
- for $\bar{\imath} = \bar{2}$, construct a string of brackets as before, but ordered lexicographically by height, then right to left.
The “horizontal” crystal

- Define new operators $E_{\vec{i}}$ and $F_{\vec{i}}$ on the set of partitions.
- for $\vec{i} = \vec{2}$, construct a string of brackets as before, but ordered lexicographically by height, then right to left.
The “horizontal” crystal

- Define new operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on the set of partitions.
- for $\bar{i} = \bar{2}$, construct a string of brackets as before, but ordered lexicographically by height, then right to left.
Define new operators $E_\vec{i}$ and $F_\vec{i}$ on the set of partitions.

for $\vec{i} = \vec{2}$, construct a string of brackets as before, but ordered lexicographically by height, then right to left.

$F_\vec{2}$ adds the box corresponding to the first uncanceled $\vec{\circ}$.
The “horizontal” crystal

- Define new operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on the set of partitions.
- For $\bar{i} = \bar{2}$, construct a string of brackets as before, but ordered lexicographically by height, then right to left.
- $F_{\bar{2}}$ adds the box corresponding to the first uncanceled \circ.
The "horizontal" crystal

- Define new operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on the set of partitions.
- for $i = 2$, construct a string of brackets as before, but ordered lexicographically by height, then right to left.
- $F_{\overline{2}}$ adds the box corresponding to the first uncanceled \circ.
The “horizontal" crystal

Define new operators $E_{ar{i}}$ and $F_{ar{i}}$ on the set of partitions. For $\bar{i} = \bar{2}$, construct a string of brackets as before, but ordered lexicographically by height, then right to left. $F_{\bar{2}}$ adds the box corresponding to the first uncanceled \dag. The component generated by the empty partition is a copy of $B(\Lambda_0)$. CAUTION: other components are not all crystals. A partition is in $B(\Lambda_0)$ if and only if there are no illegal hooks. I cautiously say this is "understood". One can actually read the boxes according to ANY slope. The same result is true, although definition of "illegal hook" is a bit more complicated.

Peter Tingley (MIT)
The “horizontal" crystal

- The component generated by the empty partition is a copy of $B(\Lambda_0)$.
The “horizontal" crystal

- The component generated by the empty partition is a copy of $B(\Lambda_0)$.
- CAUTION: other components are not all crystals.
The “horizontal” crystal

- The component generated by the empty partition is a copy of $B(\Lambda_0)$.
- CAUTION: other components are not all crystals.
- A partition is in $B(\Lambda_0)$ if and only if there are no illegal hooks.
The “horizontal" crystal

- The component generated by the empty partition is a copy of \(B(\Lambda_0) \).
- CAUTION: other components are not all crystals.
- A partition is in \(B(\Lambda_0) \) if and only if there are no illegal hooks.
The “horizontal" crystal

- The component generated by the empty partition is a copy of $B(\Lambda_0)$.
- CAUTION: other components are not all crystals.
- A partition is in $B(\Lambda_0)$ if and only if there are no illegal hooks.
The “horizontal" crystal

- The component generated by the empty partition is a copy of $B(\Lambda_0)$.
- CAUTION: other components are not all crystals.
- A partition is in $B(\Lambda_0)$ if and only if there are no illegal hooks.
The “horizontal" crystal

- The component generated by the empty partition is a copy of $B(\Lambda_0)$.
- CAUTION: other components are not all crystals.
- A partition is in $B(\Lambda_0)$ if and only if there are no illegal hooks.
- I cautiously say this is “understood".
The “horizontal" crystal

- The component generated by the empty partition is a copy of $B(\Lambda_0)$.
- CAUTION: other components are not all crystals.
- A partition is in $B(\Lambda_0)$ if and only if there are no illegal hooks.
- I cautiously say this is “understood".
The “horizontal" crystal

One can actually read the boxes according to ANY slope
The “horizontal" crystal

- One can actually read the boxes according to ANY slope
The “horizontal" crystal

- One can actually read the boxes according to ANY slope
A structure I only partly understand

Fayers’ crystals

The “horizontal” crystal

- One can actually read the boxes according to ANY slope
The "horizontal" crystal

- One can actually read the boxes according to ANY slope
- The same result is true, although definition of "illegal hook" is a bit more complicated.
Horizontal to monomial
Horizontal to monomial

- There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal.
There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal.
There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal.

Each “inner" corner corresponds to a Y and each “outer" corner to a Y^{-1}.
A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal. Each "inner" corner corresponds to a Y and each "outer" corner to a Y^{-1}.

Some other slopes correspond to known models. The Misra-Miwa crystal (at many slopes, although for some only the highest component works). A recent crystal due to Chris Berg.

Peter Tingley (MIT)
Korea, September 2009
A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

There is a natural isomorphism between $B(\Lambda_0)$ realized using the
horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal.

Each "inner" corner corresponds to a Y and each "outer" corner to a Y^{-1}.

Some other slopes correspond to known models. The Misra-Miwa crystal
(at many slopes, although for some only the highest component works).

A recent crystal due to Chris Berg.

Peter Tingley (MIT)
A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal.

Each "inner" corner corresponds to a Y and each "outer" corner to a Y_{-1}.

Some other slopes correspond to known models.

The Misra-Miwa crystal (at many slopes, although for some only the highest component works).

A recent crystal due to Chris Berg.

Peter Tingley (MIT)

\tilde{sl}_n crystals

Korea, September 2009
Horizontal to monomial

There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal. Each "inner" corner corresponds to a $Y_{\lambda, \mu}$ and each "outer" corner to a $Y_{\lambda', \mu'}$. Some other slopes correspond to known models. The Misra-Miwa crystal (at many slopes, although for some only the highest component works). A recent crystal due to Chris Berg.

$Y_{\lambda, \mu}$
Horizontal to monomial

There is a natural isomorphism between $\mathcal{B}(\Lambda_0)$ realized using the horizontal crystal and $\mathcal{B}(\Lambda_0)$ realized using the monomial crystal. Each "inner" corner corresponds to a Y and each "outer" corner to a Y^{-1}. Some other slopes correspond to known models. The Misra-Miwa crystal (at many slopes, although for some only the highest component works). A recent crystal due to Chris Berg.
A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal.

Each "inner" corner corresponds to a Y and each "outer" corner to a Y^{-1}.

Some other slopes correspond to known models. The Misra-Miwa crystal (at many slopes, although for some only the highest component works). A recent crystal due to Chris Berg.

$Y_{\bar{3}, 11} Y^{-1}_{\bar{2}, 12}$
A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

\[Y_{\frac{3}{2}, 11} Y_{-1}^{-1} \]

Peter Tingley (MIT)
Korea, September 2009
13 / 14
Horizontal to monomial

\[
Y_{\bar{3},11} Y_{\bar{2},12}^{-1}
\]
Horizontal to monomial

$Y_{\tilde{3},11} Y_{\tilde{2},12} Y_{\tilde{2},8}$
A structure I only partly understand

Horizontal to monomial crystals (partly conjectural)

There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal. Each "inner" corner corresponds to a Y and each "outer" corner to a Y^{-1}.

Some other slopes correspond to known models. The Misra-Miwa crystal (at many slopes, although for some only the highest component works). A recent crystal due to Chris Berg.

Peter Tingley (MIT)
A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal.

Each "inner" corner corresponds to a Y and each "outer" corner to a Y^{-1}.

Some other slopes correspond to known models.

The Misra-Miwa crystal (at many slopes, although for some only the highest component works).

A recent crystal due to Chris Berg.

Peter Tingley (MIT)

Korea, September 2009
A structure I only partly understand
Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal.

Each "inner" corner corresponds to a Y and each "outer" corner to a Y^{-1}.

Some other slopes correspond to known models. The Misra-Miwa crystal (at many slopes, although for some only the highest component works). A recent crystal due to Chris Berg.

$Y_{3,11}Y_{2,12}^{-1}Y_{2,8}Y_{1,9}^{-1}$
A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

\[
Y_{\bar{3},11} Y_{2,12}^{-1} Y_{\bar{2},8}^{-1} Y_{\bar{1},9}^{-1}
\]
A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal. Each “inner” corner corresponds to a Y and each “outer” corner to a Y^{-1}.

Some other slopes correspond to known models. The Misra-Miwa crystal (at many slopes, although for some only the highest component works). A recent crystal due to Chris Berg.

Peter Tingley (MIT)
A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal. Each “inner” corner corresponds to a Y and each “outer” corner to a Y^{-1}.

Some other slopes correspond to known models. The Misra-Miwa crystal (at many slopes, although for some only the highest component works). A recent crystal due to Chris Berg.

$Y_{3,11} Y_{2,12}^{-1} Y_{2,8} \ Y_{1,9}^{-1} \ Y_{2,6}$
A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal.

Each "inner" corner corresponds to a Y and each "outer" corner to a Y^{-1}.

Some other slopes correspond to known models. The Misra-Miwa crystal (at many slopes, although for some only the highest component works). A recent crystal due to Chris Berg.

Peter Tingley (MIT)
A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

\[Y_{3,11} Y_{2,12}^{-1} Y_{2,8} Y_{1,9}^{-1} Y_{2,6} \]
Horizontal to monomial

\[Y_{\overline{3},11} Y_{\overline{2},12} Y_{\overline{2},8} Y_{\overline{1},9} Y_{\overline{2},6} Y_{\overline{1},7} \]
A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

There is a natural isomorphism between $B(\Lambda^0)$ realized using the horizontal crystal and $B(\Lambda^0)$ realized using the monomial crystal.

Each “inner” corner corresponds to a Y and each “outer” corner to a Y^{-1}.

Some other slopes correspond to known models.

The Misra-Miwa crystal (at many slopes, although for some only the highest component works).

A recent crystal due to Chris Berg.

There is a natural isomorphism between $B(\Lambda^0)$ realized using the horizontal crystal and $B(\Lambda^0)$ realized using the monomial crystal.

Each “inner” corner corresponds to a Y and each “outer” corner to a Y^{-1}.

Some other slopes correspond to known models.

The Misra-Miwa crystal (at many slopes, although for some only the highest component works).

A recent crystal due to Chris Berg.

$Y_{\bar{3},11}^{-1} Y_{\bar{2},12} Y_{\bar{2},8} Y_{\bar{1},9}^{-1} Y_{\bar{2},6} Y_{\bar{1},7}^{-1}$
Horizontal to monomial

\[Y_{\frac{3}{1},11} Y_{\frac{2}{12}} Y_{\frac{2}{8}} Y_{\frac{1}{9}} Y_{\frac{2}{6}} Y_{\frac{1}{7}} \]
A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal. Each "inner" corner corresponds to a Y and each "outer" corner to a Y^{-1}. Some other slopes correspond to known models. The Misra-Miwa crystal (at many slopes, although for some only the highest component works). A recent crystal due to Chris Berg.

Peter Tingley (MIT)

$\hat{s}l_n$ crystals

Korea, September 2009
Horizontal to monomial

A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal. Each "inner" corner corresponds to a Y and each "outer" corner to a Y^{-1}. Some other slopes correspond to known models.

The Misra-Miwa crystal (at many slopes, although for some only the highest component works).

A recent crystal due to Chris Berg.

Peter Tingley (MIT)
A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal. Each “inner” corner corresponds to a Y and each “outer” corner to a Y_{-1}.

Some other slopes correspond to known models. The Misra-Miwa crystal (at many slopes, although for some only the highest component works). A recent crystal due to Chris Berg.

Peter Tingley (MIT)
A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal. Each "inner" corner corresponds to a Y and each "outer" corner to a Y^{-1}.

Some other slopes correspond to known models. The Misra-Miwa crystal (at many slopes, although for some only the highest component works). A recent crystal due to Chris Berg.

Peter Tingley (MIT)
A structure I only partially understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

\[Y_{3,11}, Y_{2,12}^{-1}, Y_{2,8}^{-1}, Y_{1,9}^{-1}, Y_{2,6}^{-1}, Y_{1,7}^{-1}, Y_{3,5}^{-1}, Y_{2,6}^{-1} \]
A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal.

Each "inner" corner corresponds to a Y and each "outer" corner to a Y^{-1}

Some other slopes correspond to known models.

The Misra-Miwa crystal (at many slopes, although for some only the highest component works).

A recent crystal due to Chris Berg.

Peter Tingley (MIT)

Korea, September 2009
A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal. Each "inner" corner corresponds to a Y and each "outer" corner to a Y^{-1}.

Some other slopes correspond to known models. The Misra-Miwa crystal (at many slopes, although for some only the highest component works). A recent crystal due to Chris Berg.

$Y_{3,11}^{-1} Y_{2,12}^{-1} Y_{2,8}^{-1} Y_{2,6}^{-1} Y_{3,5}^{-1} Y_{2,6}^{-1} Y_{1,5}^{-1}$
A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal. Each "inner" corner corresponds to a \bar{Y} and each "outer" corner to a \bar{Y}^{-1}.

Some other slopes correspond to known models. The Misra-Miwa crystal (at many slopes, although for some only the highest component works). A recent crystal due to Chris Berg.

$Y_{\bar{3},11} Y^{-1}_{\bar{2},12} Y_{\bar{2},8} Y^{-1}_{1,9} Y_{\bar{2},6} Y^{-1}_{1,7} Y_{\bar{3},5} Y^{-1}_{\bar{2},6} Y_{1,5}$

Peter Tingley (MIT)
A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

\[
\begin{align*}
Y &_{\bar{3}, 11} \quad Y_{2, 12}^{-1} \quad Y_{\bar{2}, 8}^{-1} \quad Y_{2, 6} \quad Y_{\bar{1}, 7}^{-1} \quad Y_{3, 5} \quad Y_{2, 6}^{-1} \quad Y_{\bar{1}, 5}
\end{align*}
\]
Horizontally to monomial

\[
Y_{\frac{3}{11}} \ Y^{-1}_{\frac{2}{12}} \ Y_{\frac{2}{8}} \ Y^{-1}_{\frac{1}{9}} \ Y_{\frac{2}{6}} \ Y^{-1}_{\frac{1}{7}} \ Y_{\frac{3}{5}} \ Y^{-1}_{\frac{2}{6}} \ Y_{\frac{1}{5}} \ Y^{-1}_{\frac{3}{11}}
\]
A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal. Each “inner” corner corresponds to a Y and each “outer” corner to a Y^{-1}.

Some other slopes correspond to known models. The Misra-Miwa crystal (at many slopes, although for some only the highest component works). A recent crystal due to Chris Berg.

There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal. Each “inner” corner corresponds to a Y and each “outer” corner to a Y^{-1}.

Some other slopes correspond to known models. The Misra-Miwa crystal (at many slopes, although for some only the highest component works). A recent crystal due to Chris Berg.
A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal. Each "inner" corner corresponds to a Y and each "outer" corner to a Y^{-1}.

Some other slopes correspond to known models. The Misra-Miwa crystal (at many slopes, although for some only the highest component works). A recent crystal due to Chris Berg.
A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

\[Y_{\bar{3},11} Y_{\bar{2},12} Y_{\bar{2},8} Y_{\bar{1},9} Y_{\bar{2},6} Y_{\bar{1},7} Y_{3,5} Y_{\bar{2},6} Y_{\bar{1},5} Y_{3,11} Y_{2,10} \]
A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal.

Each "inner" corner corresponds to a Y and each "outer" corner to a Y^{-1}.

Some other slopes correspond to known models.

The Misra-Miwa crystal (at many slopes, although for some only the highest component works).

A recent crystal due to Chris Berg.

Peter Tingley (MIT)
There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal. Each "inner" corner corresponds to a Y and each "outer" corner to a Y^{-1}.

Some other slopes correspond to known models. The Misra-Miwa crystal (at many slopes, although for some only the highest component works). A recent crystal due to Chris Berg.

Peter Tingley (MIT)
A structure I only partly understand
Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

There is a natural isomorphism between $B(\Lambda_0)$ realized using the horizontal crystal and $B(\Lambda_0)$ realized using the monomial crystal. Each "inner" corner corresponds to a Y and each "outer" corner to a Y^{-1}. Some other slopes correspond to known models. The Misra-Miwa crystal (at many slopes, although for some only the highest component works). A recent crystal due to Chris Berg.
A structure I only partly understand

Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

Some other slopes correspond to known models.
Some other slopes correspond to known models.

- The Misra-Miwa crystal
Horizontal to monomial

- Some other slopes correspond to known models.
- The Misra-Miwa crystal
Some other slopes correspond to known models.
The Misra-Miwa crystal
Some other slopes correspond to known models.
The Misra-Miwa crystal
Some other slopes correspond to known models.

The Misra-Miwa crystal
Some other slopes correspond to known models.
The Misra-Miwa crystal (at many slopes, although for some only the highest component works).
Some other slopes correspond to known models.

The Misra-Miwa crystal (at many slopes, although for some only the highest component works).
Some other slopes correspond to known models.

The Misra-Miwa crystal (at many slopes, although for some only the highest component works).
Some other slopes correspond to known models.

The Misra-Miwa crystal (at many slopes, although for some only the highest component works).
Some other slopes correspond to known models.

The Misra-Miwa crystal (at many slopes, although for some only the highest component works).
A structure I only partly understand
Relationship with monomial crystals (partly conjectural)

Some other slopes correspond to known models.
The Misra-Miwa crystal (at many slopes, although for some only the highest component works).
A recent crystal due to Chris Berg.
Some other slopes correspond to known models.

The Misra-Miwa crystal (at many slopes, although for some only the highest component works).

A recent crystal due to Chris Berg.
Some other slopes correspond to known models.

The Misra-Miwa crystal (at many slopes, although for some only the highest component works).

A recent crystal due to Chris Berg.
Some other slopes correspond to known models.

The Misra-Miwa crystal (at many slopes, although for some only the highest component works).

A recent crystal due to Chris Berg.
Questions

The monomial crystals come out of deep structures (q-characters, quiver varieties). Can these be used to give an algebraic/geometric explanation for Fayers' other crystal structures?

- Positive evidence: Kim has shown that the Misra-Miwa crystal is naturally isomorphic to a known modification of the monomial crystal.

The monomial crystals work for higher levels. There are also (multi) partition models at higher levels. Do Fayers' crystals generalize beyond level 1?

- Positive evidence: The correspondence in the case studied by Kim does work at higher levels.
Questions

Question

The monomial crystals come out of deep structures (q-characters, quiver varieties). Can these be used to give an algebraic/geometric explanation for Fayers’ other crystal structures?
Questions

Question

The monomial crystals come out of deep structures (q-characters, quiver varieties). Can these be used to give an algebraic/geometric explanation for Fayers’ other crystal structures?

- Positive evidence: Kim has shown that the Misra-Miwa crystal is naturally isomorphic to a known modification of the monomial crystal.
Questions

Question

The monomial crystals comes out of deep structures (q-characters, quiver varieties). Can these be used to give an algebraic/geometric explanation for Fayers’ other crystal structures?

• Positive evidence: Kim has shown that the Misra-Miwa crystal is naturally isomorphic to a known modification of the monomial crystal.

Question

The monomial crystals works for higher levels. There are also (multi) partition models at higher levels. Do Fayers’ crystals generalize beyond level 1?
Questions

Question

The monomial crystals comes out of deep structures (q-characters, quiver varieties). Can these be used to give an algebraic/geometric explanation for Fayers’ other crystal structures?

• Positive evidence: Kim has shown that the Misra-Miwa crystal is naturally isomorphic to a known modification of the monomial crystal.

Question

The monomial crystals works for higher levels. There are also (multi) partition models at higher levels. Do Fayers’ crystals generalize beyond level 1?

• Positive evidence: The correspondence in the case studied by Kim does work at higher levels.