[bookmark: _GoBack]Discussion topics & Exercises
22 January 2018
Part I: Rates of growth: little o and big O notation

Suppose that f(x) and g(x) as x . We say that “f is of smaller order than g ” if as x . In this case we write f = o(g).

Assume that f and g are each positive for large x. We say that “f is at most the order of g” if there is a positive integer M for which for large x. In this case we write f = O(g).

Growth rate of functions (SF University, CS Dept)
[image:]
[image:]

[image:]
[image:]

Exercises:
Determine which of the following statements are true; justify each answer.
 (a) 3x2 + 11 = o(x5 + x + 99)
(b) x + 5 sin x = O(x)
(c) 2x = o(x100)
(d) 3x = O(ex)
(e) x = o(ln x)

(f)

(g)
(h) (x2+1)4 = O((2x+1)3x5)

(i)
(j) ln x = o(ln(ln x))
(k) ln(x55+x33+x11+1) = O(ln x)

More big O examples

[image:]

Exercise (Purdue University)
[image:]

[image: Landau]

Edmund Landau (1877 – 1938) is known for his work in
analytic number theory and the distribution of primes.
He first introduced the little oh notation in 1909.
Part II: REDUCTION FORMULAE

1. Find a reduction formula for

2. Find a reduction formula for

More challenging practice:

[image:]

 Course Home Page Department Home Page Loyola Home Page
image4.png
Order-of-Magnitude Analysis
and Big O Notation

(@)

n
A

Function 10 100 1,000 10,000 100,000 1,000,000

1 1 1 1 1 1 1
logon 3 6 9 13 16 19

n 100 100 100 10¢ 105 108
n«log,n | 30 664 9965 10 108 107

n? 102104 106 108 101 1072
n? 100 106 100 107 10 10
2 100 10% 0% 10300 1ok 1000

A comparison of growth-rate functions: a) in tabular form

image5.png
Order-of-Magnitude Analysis
and Big O Notation

2

Vave of growth-rate function
€

A comparison of growth-rate functions: b) in graphical form

nlogn

image6.png
Arithmetic of Big-O Notation

1) If f(n) is O(g(n)) then c.f(n) is O(g(n)), where
c is a constant.
e Example: 23*log n is O(log n)

2) If fy(n) is O(g(n)) and f,(n) is O(g(n)) then
also f;(n)+f,(n) is O(g(n))
e Example: what is order of n2+n?
n2is O(n?)
n is O(n) but also O(n?)
therefore n2+n is O(n?)

image7.wmf
÷

÷

ø

ö

ç

ç

è

æ

=

+

+

+

3

2

)

ln(ln

ln

3

x

o

x

x

x

oleObject3.bin

image8.wmf
(

)

x

o

x

=

ln

oleObject4.bin

image9.wmf
(

)

9

1789

5

2009

13

2

2

+

=

+

+

+

x

O

x

x

x

oleObject5.bin

image10.png
More Big-Oh Examples

* 7n-2

215 O()

need ¢ > 0 and n, * 1 such that Tn-2 £ cnforn
thisistrue for ¢ = 7 and ny = 1

=303 + 207 + 5

3% + 200 + 5 s O(?)

need c > 0 and n, *1 such that 3¢ + 200 + 5 Ecentforn *ny
hisis true for ¢ = 4 and ry = 21
=3logn + log logn

3log n + log log n is Oflog n)

need c > 0.and n, * 1 suchthat 3 logn + bg log n Ecdognforn *ny

thisis true for ¢ = 4 and ny = 2

image11.png
Arrange the following list of functions in ascending order of growth rate, i.e. if function
g(n) immediately follows f(n) in your list then, it should be the case that f(n) =
Og(m))-

The correct order is g1, g1, g, gs. 92, 9r. g The easiest ones to tell are the polynomially-
hounded functions and the purely exponential functions. n(logn)* = o(n*?), 2* =
0(2%), 2 = 0(22"). When exponents and logarithms are combined, you have to be
careful. Assuming all the logarithms are base 2, 2VP&" = o(2") but 28" = n, so

image12.jpeg

image13.png
Integral

Reduction formula

1 :/ . g @Warib omb \
" Vaz 16 " Tan+1) a@n+1) "
I / dz 2 Vaz b a(2n—3)
n= | o—7 = — I
anaz 16 (n—1ba ' 2b(n—1)
2" /(az + b)° b
B= /x"\/az+bdz JA= 2 VA SRl 2D
a(2n+3) a(2n+3)
dz 1 [1
Inpn = Inp = +a(m+n—2)Inn1
i /(nw+b)“(w+q)" i (n—1)(bp— ag) | (az+b)™(pz +q)*!
1[Gy tm—9L
_ [laztb)" _ 1 [e L }
In=f Gorar © | 7 e+ mp — ag) 1
(wa ™
o [- a1

image1.wmf
0

)

(

)

(

®

x

g

x

f

oleObject1.bin

image2.wmf
M

x

g

x

f

£

)

(

)

(

oleObject2.bin

image3.png
Growth-rate Functions

O(1) — constant time, the time is independent of|n,
e.g. array look-up

O(log n) — logarithmic time, usually the log is base
2, e.g. binary search

O(n) — linear time, e.g. linear search

O(n*log n) — e.g. efficient sorting algorithms

O(n?) — quadratic time, e.g. selection sort

O(n¥) — polynomial (where k is some constant)

O(2") — exponential time, very slow!

Order of growth of some common functions
0O(1) < O(log n) < O(n) < O(n * log n) < O(n?) < O(n3) < O(2")

