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Part I:  Rates of growth:   little o and big O notation
 


Suppose that f(x)   and g(x)   as x   .  We say that “f is of smaller order than g ” if   as x   .  In this case we write f = o(g).  

Assume that f and g are each positive for large x.  We say that “f is at most the order of g” if there is a positive integer M for which for large x.   In this case we write f = O(g).  


Growth rate of functions (SF University, CS Dept)
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Exercises:
Determine which of the following statements are true; justify each answer.
 (a)    3x2 + 11 =  o(x5 + x + 99)
(b)     x + 5 sin x = O(x)
(c)     2x = o(x100)
(d)     3x = O(ex)
(e)     x = o(ln x)

(f)      

(g)      
(h)     (x2+1)4 = O((2x+1)3x5)

(i)     
(j)    ln x = o(ln(ln x))
(k)   ln(x55+x33+x11+1)  =  O(ln x) 





More big O examples
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Exercise (Purdue University)
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[image: Landau]

Edmund Landau (1877 – 1938) is known for his work in 
analytic number theory and the distribution of primes.  
He first introduced the little oh notation in 1909.
Part II:  REDUCTION FORMULAE

1.  Find a reduction formula for 

2. Find a reduction formula for 

More challenging practice:
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Order-of-Magnitude Analysis
and Big O Notation

(@)

n
A

Function 10 100 1,000 10,000 100,000 1,000,000

1 1 1 1 1 1 1
logon 3 6 9 13 16 19

n 100 100 100 10¢ 105 108
n«log,n | 30 664 9965 10 108 107

n? 102104 106 108 101 1072
n? 100 106 100 107 10 10
2 100 10% 0% 10300 1ok 1000

A comparison of growth-rate functions: a) in tabular form
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Order-of-Magnitude Analysis
and Big O Notation
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Vave of growth-rate function
€

A comparison of growth-rate functions: b) in graphical form

nlogn
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Arithmetic of Big-O Notation

1) If f(n) is O(g(n)) then c.f(n) is O(g(n)), where
c is a constant.
e Example: 23*log n is O(log n)

2) If fy(n) is O(g(n)) and f,(n) is O(g(n)) then
also f;(n)+f,(n) is O(g(n))
e Example: what is order of n2+n?
n2is O(n?)
n is O(n) but also O(n?)
therefore n2+n is O(n?)
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More Big-Oh Examples

* 7n-2

215 O()

need ¢ > 0 and n, * 1 such that Tn-2 £ cnforn
thisistrue for ¢ = 7 and ny = 1

=303 + 207 + 5

3% + 200 + 5 s O(?)

need c > 0 and n, *1 such that 3¢ + 200 + 5 Ecentforn *ny
hisis true for ¢ = 4 and ry = 21
=3logn + log logn

3log n + log log n is Oflog n)

need c > 0.and n, * 1 suchthat 3 logn + bg log n Ecdognforn *ny

thisis true for ¢ = 4 and ny = 2
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Arrange the following list of functions in ascending order of growth rate, i.e. if function
g(n) immediately follows f(n) in your list then, it should be the case that f(n) =
Og(m))-

The correct order is g1, g1, g, gs. 92, 9r. g The easiest ones to tell are the polynomially-
hounded functions and the purely exponential functions. n(logn)* = o(n*?), 2* =
0(2%), 2 = 0(22"). When exponents and logarithms are combined, you have to be
careful. Assuming all the logarithms are base 2, 2VP&" = o(2") but 28" = n, so
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Integral

Reduction formula
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Growth-rate Functions

O(1) — constant time, the time is independent of|n,
e.g. array look-up

O(log n) — logarithmic time, usually the log is base
2, e.g. binary search

O(n) — linear time, e.g. linear search

O(n*log n) — e.g. efficient sorting algorithms

O(n?) — quadratic time, e.g. selection sort

O(n¥) — polynomial (where k is some constant)

O(2") — exponential time, very slow!

Order of growth of some common functions
0O(1) < O(log n) < O(n) < O(n * log n) < O(n?) < O(n3) < O(2")




