Math 201  Class discussion:  Bijections
3 April 2019

Review of sets closed under a binary relation.
I  (a)  Let  S = N  N.  Define the following operation, ☼, on S:    (a, b) ☼ (c, d)  = (a+c, b+d).
Is S closed under ☼?  Is ☼ associative? Commutative?
(b)   Let  S = Q  R.  Define the following operation,☻, on S:    
(a, b) ☻ (c, d)  = (ac, a + b + c + d)
Is S closed under ☻?  Is ☻ associative? Commutative?
(c)    Let S = Q.   Define the following operation, ♠, on S:
a ♠ b = 13 + ab
Is S closed under ♠?  Is ♠ associative? Commutative?
II   Determine which of the following sets are closed under the given operation.  Explain.  Unless otherwise stated, the operation is addition of functions.
 
0.   The set of all continuous functions f: R → R
0.   The set of all differentiable functions f: R → R
0.   The set of all polynomials of degree 8.
0.   The set of all polynomials of degree ≤ 5
0.   The set of all polynomials, p(x), such that p(0) = 0
0.  The set of all non-negative continuous functions that are defined on the interval [0, 1].
0.   The set of all points in the first quadrant: that is, V = {(a, b)|  a ≥ 0, b ≥ 0} with the usual addition.
0.   The set of all points in the first and third quadrants:  that is, 
V = {(a, b)|  a ≥ 0, b ≥ 0}{(a, b)|  a ≤ 0, b ≤ 0} with the usual addition.
0.   The set of all 3×3 diagonal matrices with the usual matrix addition.
0.   The set of all differentiable functions, f(x), defined on the real line such that  = 1
0.   The set of all differentiable functions, f(x), defined on the real line such that (9) = 0
0.   The set of all convergent sequences with the usual addition.
0.    The set of all sequences having finitely many non-zero terms
0.    The set of all sequences having finitely many zero-terms
0.   Let S be the set of all real sequences that have both an infinite number of negative terms and an infinite number of positive terms. For example, the sequence 
(1, -1, 2, -2, 3, -3, 4, -4, …)  S but (1, 2, 3, 4, 5, …)  S
0.   The set of all  matrices that have zero determinant, under the operation of matrix addition.
0.   The set of all  matrices that have non-zero determinant, under the operation of matrix addition.
0.  The set of all  matrices that have at least 50 entries of 0, under the operation of matrix addition.
0.   The set of all  matrices that have only positive entries, under the operation of matrix addition.
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M. C. Escher strived to represent 
artistically the concept of infinity

1.  What does it mean to say that two sets have the same cardinality?   What does it mean to say that a set is countable?
2.    What is meant by the “infinite hotel”?   Show that each of the following sets is countable.   The set of non-negative integers.
(b)     The set of integers greater than or equal to 13.
(c)     Z
(d)    The set of positive even integers.
(e)     The set of even integers.
(f)     The set of odd integers.
(g)    The set of rational numbers strictly between 0 and 1.

What is meant by aleph-0 ? 
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Review of sets closed under a binary relation. 

I  (a)  Let  S = N  N.  Define the following operation, ¤, on S:    (a, b) ¤ (c, d)  = (a+c, b+d). 

Is S closed under ¤?  Is ¤ associative? Commutative? 

(b)   Let  S = Q  R.  Define the following operation,?, on S:     

(a, b) ? (c, d)  = (ac, a + b + c + d) 

Is S closed under ??  Is ? associative? Commutative? 

(c)    Let S = Q.   Define the following operation, ?, on S: 

a ? b = 13 + ab 

Is S closed under ??  Is ? associative? Commutative? 

II   Determine which of the following sets are closed under the given operation.  Explain.  Unless 

otherwise stated, the operation is addition of functions. 

  

1.   The set of all continuous functions f: R ? R 

2.   The set of all differentiable functions f: R ? R 

3.   The set of all polynomials of degree 8. 

4.   The set of all polynomials of degree = 5 

5.   The set of all polynomials, p(x), such that p(0) = 0 

6.  The set of all non-negative continuous functions that are defined on the interval [0, 1]. 

7.   The set of all points in the first quadrant: that is, V = {(a, b)|  a = 0, b = 0} with the usual 

addition. 

8.   The set of all points in the first and third quadrants:  that is,  

V = {(a, b)|  a = 0, b = 0}{(a, b)|  a = 0, b = 0} with the usual addition. 

9.   The set of all 3×3 diagonal matrices with the usual matrix addition. 

10.   The set of all differentiable functions, f(x), defined on the real line such that ??'(4) = 1 

11.   The set of all differentiable functions, f(x), defined on the real line such that ??'(9) = 0 

12.   The set of all convergent sequences with the usual addition. 

13.    The set of all sequences having finitely many non-zero terms 

14.    The set of all sequences having finitely many zero-terms 

15.   Let S be the set of all real sequences that have both an infinite number of negative terms 

and an infinite number of positive terms. For example, the sequence  

(1, -1, 2, -2, 3, -3, 4, -4, …)  S but (1, 2, 3, 4, 5, …)  S 

16.   The set of all 2×2 matrices that have zero determinant, under the operation of matrix 

addition. 

17.   The set of all 2×2 matrices that have non-zero determinant, under the operation of 

matrix addition. 

18.  The set of all 10×10 matrices that have at least 50 entries of 0, under the operation of 

matrix addition. 

19.   The set of all 10×10 matrices that have only positive entries, under the operation of 

matrix addition. 

