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Since we are going to consider several useful variants of induction later, we will refer to the 

induction method described above as ordinary induction when we need to distinguish it. 

 

I   State the Principle of (ordinary) Mathematical Induction. 

 

II   Using the method of mathematical induction, verify each of the following: 

 

1.  3 is a divisor of (n3 + 2n)  for all natural numbers, N. 



2.  3 is a divisor of (7n – 2n)  for all non-negative integers, n. 

3.  1 + 3 + 5 + … + (2n – 1) = n2 for all natural numbers, n 

4.  (1 + x)n ≥ 1 + nx  for all real x > -1 and all non-negative integers.   

(This is called Bernoulli’s inequality.) 

 

5.  1 + 2 + 3 + … + n =  n(n+1)/2  for all natural numbers, n. 

 

6. 12 + 22 + 32 + … + n2 = n(n+1)(2n+1)/6  for all natural numbers, n. 

 

7.  2 + 22 + 23 + … + 2n = 2n+1 – 2 for all natural numbers, n. 

8. 4n < 2n  for all natural numbers n ≥ 5. 

9.   (1)(2) + (2)(3) + (3)(4) + … + (n)(n+1) = n(n+1)(n+2)/3  for all natural numbers, n. 

 

10.   133 | (122n – 11n) for all non-negative integers n. 

 

III    State the Principle of Strong Induction.   

 

1. Using strong induction, prove the 3 cent/5 cent postage stamp problem (again). 

2. Consider the Lucas series 1, 3, 4, 7, 11, 18, 29, 47, 76, ….   This sequence is defined recursively 

by:  a1 = 1, a2 = 3, and, for all n  3,  an = an-1 + an-2.  Using strong induction prove that an < (7/4)n 

for all positive integers n.  

3. Define a sequence recursively by:  b1 = 1, b2 = 2, b3 = 3, and, for all  

n  4,  bn = bn-1 + bn-2 + bn-3.  Using strong induction, prove that bn < 2n for all natural numbers, n. 

 

4.   Using strong induction prove that every integer n ≥ 2 can be expressed as a product of primes.   

 

 

implies that 

 
A Template for Induction Proofs   (MIT notes) 

 
1.  State that the proof uses induction. This immediately conveys the overall structure of the proof, which 

helps your reader follow your argument. 

 

2. Define an appropriate predicate P(n). The predicate P(n) is called the induction hypothesis. The 

eventual conclusion of the induction argument will be that P(n) is true for all nonnegative n. A clearly 

stated induction hypothesis is often the most important part of an induction proof, and its omission is the 

largest source of confused proofs by students. In the simplest cases, the induction hypothesis can be lifted 

straight from the proposition you are trying to prove, as we did with equation (*). Sometimes the induction 

hypothesis will involve several variables, in which case you should indicate which variable serves as n.  

 

3. Prove that P(0) is true. This is usually easy, as in the example above. This part of the proof is called the 

base case or basis step.  

 



4. Prove that P(n) implies P(n+1) for every nonnegative integer n.  

This is called the inductive step. The basic plan is always the same:  

assume that P(n) is true for some given non-negative integer, n, and then use this assumption to prove that 

P(n+1) is true.  

These two statements should be fairly similar, but bridging the gap may require some ingenuity. Whatever 

argument you give must be valid for every nonnegative integer n, since the goal is to prove that all the 

following implications are true:  

P(0)→P(1),  P(1) → 𝑃(2), 𝑃(2) → 𝑃(3),… 

 

5. Invoke induction. Given these facts, the induction principle allows you to conclude that P(n) is true for 

all nonnegative n. This is the logical capstone to the whole argument, but it is so standard that it’s usual not 

to mention it explicitly.  

 

Always be sure to explicitly label the base case and the inductive step. Doing so will make your proofs 

clearer and will decrease the chance that you forget a key step—such as checking the base case. Below is 

the formula for the sum of the nonnegative integers up to n. The formula holds for all nonnegative integers, 

so it is the kind of statement to which induction applies directly. We’ve already proved this formula using 

the Well Ordering Principle, but now we’ll prove it by induction, that is, using the Induction Principle.  

 

(eqn *) 

 

To prove the theorem by induction, define predicate P(n) to be the equation (*). Now the theorem can be 

restated as the claim that P(n) is true for all n ∈N. This is great, because the Induction Principle lets us 

reach precisely that conclusion, provided we establish two simpler facts: 

 

So now our job is reduced to proving these two statements.  

The first statement follows because of the convention that a sum of zero terms is equal to 0. So P(0)  is the 

true assertion that a sum of zero terms is equal to 0(1)/2 = 0.   

The second statement is more complicated. But remember the basic plan for proving the validity of any 

implication: assume the statement on the left and then prove the statement on the right.  

In this case, we assume P(k), for a given n ∈ 𝑵, ---- namely, equation (*) —in order to prove P(n+1), which 

is the equation 

 

(eqn **) 

 

These two equations are quite similar; in fact, adding n+1 to both sides of equation (*) and simplifying the 

right side gives the equation (**), viz: 

 
Thus, if P(n) is true, then so is P(n+1).  This argument is valid for every nonnegative integer n, so this 

establishes the second fact required by the induction proof.  

Therefore, the Induction Principle says that the predicate P(m) is true for all nonnegative integers, m. The 

theorem is proved. 

 
 

 



A Clean Write-up  
 

The proof of (*) given above is perfectly valid; however, it contains a lot of extraneous explanation that 

you won’t usually see in induction proofs. The write-up below is closer to what you might see in print and 

should be prepared to produce yourself. 

 

Revised proof of (*).  

We use induction. The induction hypothesis, P(n), will be equation (*).  

 

Base case: P(0) is true, because both sides of equation (*) equal zero when n=0. 

 

Inductive step:  

 

Let n, a non-negative integer, be given.  Assume that P(n) is true, that is equation (*) holds for some 

nonnegative integer n. Then adding n + 1 to both sides of the equation implies that (by easy algebra): 

 
By simple algebra, which proves P(n+1). 

So it follows by induction that P(n) is true for all nonnegative n.  

 
It probably troubles you that induction led to a proof of this summation formula but did not provide an 

intuitive way to understand it nor did it explain where the formula came from in the first place. 

This is both a weakness and a strength. It is a weakness when a proof does not provide insight. But it is a 

strength that a proof can provide a reader with a reliable guarantee of correctness without requiring insight. 

 

 

 

 

 

 

 

 

 
 

 

 


