Class discussion:   Mathematical Induction, continued
17 February 2019
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History (Wikipedia)  In 370 BC, Plato's Parmenides may have contained an early example of an implicit inductive proof. The earliest implicit traces of mathematical induction may be found in Euclid's proof that the number of primes is infinite and in Bhaskara's "cyclic method". An opposite iterated technique, counting down rather than up, is found in the Sorites paradox, where it was argued that if 1,000,000 grains of sand formed a heap, and removing one grain from a heap left it a heap, then a single grain of sand (or even no grains) forms a heap.
An implicit proof by mathematical induction for arithmetic sequences was introduced in the al-Fakhri written by al-Karaji around 1000 AD, who used it to prove the binomial theorem and properties of Pascal's triangle. 
None of these ancient mathematicians, however, explicitly stated the induction hypothesis. Another similar case (contrary to what Vacca has written, as Freudenthal carefully showed) was that of Francesco Maurolico in his Arithmeticorum libri duo (1575), who used the technique to prove that the sum of the first n odd integers is n2. The first explicit formulation of the principle of induction was given by Pascal in his Traité du triangle arithmétique (1665). Another Frenchman, Fermat, made ample use of a related principle, indirect proof by infinite descent. The induction hypothesis was also employed by the Swiss Jakob Bernoulli, and from then on it became more or less well known. The modern rigorous and systematic treatment of the principle came only in the 19th century, with George Boole, Augustus de Morgan, Charles Sanders Peirce, Giuseppe Peano, and Richard Dedekind. 
 

I   Using the method of ordinary mathematical induction, prove each of the following:

1.  3 is a divisor of (n3 + 2n)  for all natural numbers, N.
1.  3 is a divisor of (7n – 2n)  for all non-negative integers, n.
1.  1 + 3 + 5 + … + (2n – 1) = n2 for all natural numbers, n
1.  (1 + x)n ≥ 1 + nx  for all real x > -1 and all non-negative integers.  
(This is called Bernoulli’s inequality.)

1.  1 + 2 + 3 + … + n =  n(n+1)/2  for all natural numbers, n.

1. 12 + 22 + 32 + … + n2 = n(n+1)(2n+1)/6  for all natural numbers, n.

1.  2 + 22 + 23 + … + 2n = 2n+1 – 2 for all natural numbers, n.

1. 4n < 2n  for all natural numbers n ≥ 5.
1.   (1)(2) + (2)(3) + (3)(4) + … + (n)(n+1) = n(n+1)(n+2)/3  for all natural numbers, n.

1.   133 | (122n – 11n) for all non-negative integers n.

1. A total of n democrats and republicans stand in line. If the person at the head of the line is a democrat and the person at the end of the line is a republican, then somewhere in the line, a republican must stand next to a democrat.

1. [bookmark: _GoBack]Consider the spider example discussed in class. Where is the flaw in theprrof?  


A Template for Induction Proofs   (MIT notes)
1.  State that the proof uses induction. 
2. Define an appropriate predicate P(n). 
3. Prove that P(0) is true. 
4. Prove that P(n) implies P(n+1) for every nonnegative integer n. 
5. Invoke induction. 
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