
Math 201   Class discussion:  25 February 2019 

Direct Proofs:  Number theory  (revised) 

 

 
 

 

Write direct proofs for the each of the following, inserting parenthetic remarks to explain 

the rationale behind each step. 

1. Prove that if n is even, then so is n2 and if n is odd then so is n2. 

2. Prove that the sum of two odd numbers is even. 

3. Prove that the sum of two even numbers is even. 

4. Prove that the sum of an even number and an odd number is odd. 

5. Prove that the product of two odd numbers is odd. 

6. Prove that the product of an even number and any other number is even. 

7. Let a, b, c be integers.  Prove that if a|b and b|c then a|c. 

8. Prove that x is odd if and only if |x| is odd. 

9. If x and y are integers and x2+ y2 is even, prove that x + y is even. 

10. Let n be any integer.  Prove that n2 + 3n + 4 is even.   Hint: consider cases. 

11. Prove that if 𝑛 ∈ 𝑁, 𝑡ℎ𝑒𝑛 1 + (−1)𝑛(2𝑛 − 1) 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 4. 

12. Prove that if two integers have opposite parity, then their sum is odd. 

13. Prove that if n is the form 3K + 1, then n2 is of the form 3L + 1. 



14. Prove that if n is the form 5K + 3, then n2 is of the form 5L + 4. 

15.  Let n be larger than 6.  Prove that n2 – 25 cannot be prime. 

16.  Let a, b, c, d ∈ 𝑍.   Prove that if a|b and c|d. then ac|bd. 

17.  Let n be an integer larger than 3.  Then n3 – 8 cannot be prime.    

18.  Prove that the geometric mean of any two positive real numbers is less than or equal 

to its arithmetic mean.  Hint:  Begin with (a – b)2 ≥ 0. 

19.  Prove that if n is odd, then n3 is odd. 

20.  Prove that if two integers have opposite parity, then their product is even. 

21.  Let a, b, c be integers.  Prove that if a2 | b and b3|c, then a6|c. 

22.  Let x and y be real numbers.  Prove that if x2 + 5y = y2 + 5x.  Prove that either x = y 

or x + y = 5. 

23. Let m and n be integers.  Prove that if m and n are perfect squares then mn is also a 

perfect square. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 
The theory of Numbers has always been regarded as one of the most obviously useless branches 

of Pure Mathematics. The accusation is one against which there is no valid defense, and it is 

never more just than when directed against the parts of the theory which are more particularly 

concerned with primes. A science is said to be useful if its development tends to accentuate the 

existing inequalities in the distribution of wealth, or more directly promotes the destruction of 

human life. The theory of prime numbers satisfies no such criteria. Those who pursue it will, if 

they are wise, make no attempt to justify their interest in a subject so trivial and so remote, and 

will console themselves with the thought that the greatest mathematicians of all ages have found 

it in it a mysterious attraction impossible to resist. 

  

                                                             - G. H. Hardy from a 1915 lecture on prime numbers 

 
 


