CLASS DISCUSSION: 27 OCTOBER 2019

PROOF BY CONTRAPOSITIVE

Prove each of the following by the *contrapositive method*.

- 1. If x and y are two integers for which x + y is even, then x and y have the same parity.
- 2. If x and y are two integers whose product is even, then at least one of the two must be even.
- 3. If x and y are two integers whose product is odd, then both must be odd.
- 4. If n is a positive integer of the form n = 3k + 2, then n is not a perfect square.
- 5. Let $x \in Z$. If $x^2 6x + 5$ is even, then x is odd.
- 6. Let $x, y \in Z$. If $7 \nmid xy$, then $7 \nmid x$ and $7 \nmid y$.

Exercises for Chapter 5

- A. Use the method of contrapositive proof to prove the following statements. (In each case you should also think about how a direct proof would work. You will find in most cases that contrapositive is easier.)
 - **1.** Suppose $n \in \mathbb{Z}$. If n^2 is even, then n is even.
 - **2.** Suppose $n \in \mathbb{Z}$. If n^2 is odd, then n is odd.
 - **3.** Suppose $a, b \in \mathbb{Z}$. If $a^2(b^2-2b)$ is odd, then a and b are odd.
 - **4.** Suppose $a, b, c \in \mathbb{Z}$. If a does not divide bc, then a does not divide b.
 - **5.** Suppose $x \in \mathbb{R}$. If $x^2 + 5x < 0$ then x < 0.
 - **6.** Suppose $x \in \mathbb{R}$. If $x^3 x > 0$ then x > -1.
 - **7.** Suppose $a, b \in \mathbb{Z}$. If both ab and a+b are even, then both a and b are even.
 - **8.** Suppose $x \in \mathbb{R}$. If $x^5 4x^4 + 3x^3 x^2 + 3x 4 \ge 0$, then $x \ge 0$.
 - **9.** Suppose $n \in \mathbb{Z}$. If $3 \nmid n^2$, then $3 \nmid n$.
 - **10.** Suppose $x, y, z \in \mathbb{Z}$ and $x \neq 0$. If $x \nmid yz$, then $x \nmid y$ and $x \nmid z$.
 - 11. Suppose $x, y \in \mathbb{Z}$. If $x^2(y+3)$ is even, then x is even or y is odd.
 - 12. Suppose $a \in \mathbb{Z}$. If a^2 is not divisible by 4, then a is odd.
 - **13.** Suppose $x \in \mathbb{R}$. If $x^5 + 7x^3 + 5x \ge x^4 + x^2 + 8$, then $x \ge 0$.

- B. Prove the following statements using either direct or contrapositive proof. Sometimes one approach will be much easier than the other.
 - **14.** If $a,b \in \mathbb{Z}$ and a and b have the same parity, then 3a+7 and 7b-4 do not.
 - **15.** Suppose $x \in \mathbb{Z}$. If $x^3 1$ is even, then x is odd.
 - **16.** Suppose $x \in \mathbb{Z}$. If x + y is even, then x and y have the same parity.
 - 17. If n is odd, then $8 | (n^2 1)$.
 - **18.** For any $a, b \in \mathbb{Z}$, it follows that $(a+b)^3 \equiv a^3 + b^3 \pmod{3}$.
 - **19.** Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $a \equiv b \pmod{n}$ and $a \equiv c \pmod{n}$, then $c \equiv b \pmod{n}$.
 - **20.** If $a \in \mathbb{Z}$ and $a \equiv 1 \pmod{5}$, then $a^2 \equiv 1 \pmod{5}$.
 - **21.** Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $a \equiv b \pmod{n}$, then $a^3 \equiv b^3 \pmod{n}$
 - **22.** Let $a \in \mathbb{Z}$, $n \in \mathbb{N}$. If a has remainder r when divided by n, then $a \equiv r \pmod{n}$.
 - **23.** Let $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $a \equiv b \pmod{n}$, then $ca \equiv cb \pmod{n}$.
 - **24.** If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $ac \equiv bd \pmod{n}$.
 - **25.** If $n \in \mathbb{N}$ and $2^n 1$ is prime, then n is prime.
 - 26. If n = 2^k − 1 for k ∈ N, then every entry in Row n of Pascal's Triangle is odd.
 - **27.** If $a \equiv 0 \pmod{4}$ or $a \equiv 1 \pmod{4}$, then $\binom{a}{2}$ is even.
 - **28.** If $n \in \mathbb{Z}$, then $4 \nmid (n^2 3)$.
 - **29.** If integers a and b are not both zero, then gcd(a,b) = gcd(a-b,b).
 - **30.** If $a \equiv b \pmod{n}$, then gcd(a, n) = gcd(b, n).
 - **31.** Suppose the division algorithm applied to a and b yields a = qb + r. Then gcd(a,b) = gcd(r,b).

Johann Carl Fredrich Gauss introduced modular arithmetic.

MODULAR ARITHMETIC: Define $a \equiv b \mod m$ (for m > 0). Show that this is an equivalence relation on the set of integers, Z. In the following, assume that a, b, c, d, m are integers and that m > 0.

- (A) Show that if $a \equiv b \mod m$, then
 - 1. $a + c \equiv b + c \mod m$
 - 2. $a-c \equiv b-c \mod m$
 - 3. $ac \equiv bc \mod m$
- **(B)** Show that if $ac \equiv bc \mod m$ (and c is not 0) then it need not follow that $a \equiv b$.
- (C) Show that if $d = \gcd(c,m)$ and $ac \equiv bc \mod m$, then $a \equiv b \mod m/d$.

(D) Show that as a special case of the above we have:

If *c* and *m* are relatively prime and $ac \equiv bc \mod m$, then $a \equiv b \mod m$.

- (E) Suppose that $a \equiv b \mod m$ and $c \equiv d \mod m$. Prove that:
 - 1. $a + c \equiv b + d \mod m$
 - 2. $a-c \equiv b-d \mod m$
 - 3. $ac \equiv bd \mod m$
- (F) Define addition and multiplication in Z_4 and in Z_5 .
- III Using modular arithmetic,
 - (a) find the remainder when 2^{125} is divided by 7.
 - **(b)** find the remainder when $(4^{19})(7^{99})$ is divided by 5.

