CLASS DISCUSSION: BI-CONDITIONAL (IFF) STATEMENTS

11 MARCH 2019

Bi-conditional statements

Exercises for Chapter 7

Prove the following statements. These exercises are cumulative, covering all techniques addressed in Chapters 4–7.

- Suppose x ∈ Z. Then x is even if and only if 3x + 5 is odd.
- **2.** Suppose $x \in \mathbb{Z}$. Then x is odd if and only if 3x + 6 is odd.
- **3.** Given an integer *a*, then $a^3 + a^2 + a$ is even if and only if *a* is even.
- 4. Given an integer a, then a² + 4a + 5 is odd if and only if a is even.
- 5. An integer *a* is odd if and only if *a*³ is odd.
- **6.** Suppose $x, y \in \mathbb{R}$. Then $x^3 + x^2y = y^2 + xy$ if and only if $y = x^2$ or y = -x.
- **7.** Suppose $x, y \in \mathbb{R}$. Then $(x + y)^2 = x^2 + y^2$ if and only if x = 0 or y = 0.
- **8.** Suppose $a, b \in \mathbb{Z}$. Prove that $a \equiv b \pmod{10}$ if and only if $a \equiv b \pmod{2}$ and $a \equiv b \pmod{5}$.
- **9.** Suppose $a \in \mathbb{Z}$. Prove that $14 \mid a$ if and only if $7 \mid a$ and $2 \mid a$.
- 10. If $a \in \mathbb{Z}$, then $a^3 \equiv a \pmod{3}$.
- **11.** Suppose $a, b \in \mathbb{Z}$. Prove that $(a-3)b^2$ is even if and only if a is odd or b is even.

Review: conditional statements

Exercises for Chapter 6

- **A.** Use the method of proof by contradiction to prove the following statements. (In each case, you should also think about how a direct or contrapositive proof would work. You will find in most cases that proof by contradiction is easier.)
 - **1.** Suppose $n \in \mathbb{Z}$. If *n* is odd, then n^2 is odd.
 - **2.** Suppose $n \in \mathbb{Z}$. If n^2 is odd, then n is odd.
 - **3.** Prove that $\sqrt[3]{2}$ is irrational.
 - **4.** Prove that $\sqrt{6}$ is irrational.
 - **5.** Prove that $\sqrt{3}$ is irrational.
 - 6. If $a, b \in \mathbb{Z}$, then $a^2 4b 2 \neq 0$.
 - 7. If $a, b \in \mathbb{Z}$, then $a^2 4b 3 \neq 0$.

- 8. Suppose $a, b, c \in \mathbb{Z}$. If $a^2 + b^2 = c^2$, then a or b is even.
- **9.** Suppose $a, b \in \mathbb{R}$. If a is rational and ab is irrational, then b is irrational.
- **10.** There exist no integers *a* and *b* for which 21a + 30b = 1.
- **11.** There exist no integers *a* and *b* for which 18a + 6b = 1.
- **12.** For every positive $x \in \mathbb{Q}$, there is a positive $y \in \mathbb{Q}$ for which y < x.
- **13.** For every $x \in [\pi/2, \pi]$, $\sin x \cos x \ge 1$.
- **14.** If *A* and *B* are sets, then $A \cap (B A) = \emptyset$.
- **15.** If $b \in \mathbb{Z}$ and $b \nmid k$ for every $k \in \mathbb{N}$, then b = 0.
- **16.** If *a* and *b* are positive real numbers, then $a + b \ge 2\sqrt{ab}$.
- **17.** For every $n \in \mathbb{Z}$, $4 \nmid (n^2 + 2)$.
- **18.** Suppose $a, b \in \mathbb{Z}$. If $4 | (a^2 + b^2)$, then *a* and *b* are not both odd.

