MATHEMATICA LAB III

line integrals, div, curl, Green's Theorem and parametric surfaces

DUE: APRIL 30

COMPUTING LINE INTEGRALS

Find the *work* done by the given force F over the given path. Also, graph the path and the vector field on one set of axes.

1.
$$\mathbf{F}(x,y) = xy^6 \mathbf{i} + 3x(xy^5 + 2) \mathbf{j}$$
, $\sigma(t) = (2 \cos t) \mathbf{i} + (\sin t) \mathbf{j}$, $0 \le t \le 2\pi$.

2.
$$\mathbf{F}(x,y,z) = (y+yz\cos(xyz))\mathbf{i} + (x^2 + xz\cos(xyz))\mathbf{j} + (z + xy\cos(xyz))$$

k,
$$\sigma(t) = (2 \cos t) \mathbf{i} + (3 \sin t) \mathbf{j} + \mathbf{k}, \quad 0 \le t \le 2\pi.$$

3.
$$\mathbf{F}(x,y,z) = (2xy)\mathbf{i} - (y^2)\mathbf{j} + (ze^x)\mathbf{k}, \ \sigma(t) = -t\mathbf{i} + t^{1/2}\mathbf{j} + 3t\mathbf{k}, \ 1 \le t \le 4.$$

COMPUTING DIVERGENCE AND CURL

- 4. Let $\mathbf{F}(x,y,z) = \sin(xyz) \mathbf{i} (x+y+z) \mathbf{j} + \log(x-z) \mathbf{k}$. Compute curl \mathbf{F} .
- 5. Let $\mathbf{G}(x,y,z) = (xyz)\mathbf{i} (\sin(x-y))\mathbf{j} + \tan(z)\mathbf{k}$. Compute div \mathbf{G} .
- 6. Let $h(x,y,z) = x/(x^2+y^2+z^2)^{1/3}$. Compute grad h.

GREEN'S THEOREM

7. Let *R* be the triangle defined by vertices (1,2), (1,8), (7,7). Let **G** be the vector field defined by

 $G(x,y) = x \exp(y) i + \cos^4(x+y) j$. Using Green's theorem, evaluate the line integral of G(x,y) over the curve C.

8. Using Green's Theorem, calculate the area of the *astroid* (also called the *hypocycloid*) given by $\mathbf{r}(t) = (\cos^3 t) \mathbf{i} + (\sin^3 t) \mathbf{j}, 0 \le t \le 2\pi$. Be sure to first graph the astroid.

9. Verify Green's Theorem for the following vector field and region. Be sure to compute *separately* each side of Green's equation to verify that they are equal.

F(x,y) = (arc tan y/x) **i** + ln (x² + y²) **j**. *C* is the boundary of the region defined by the $1 \le x^2 + y^2 \le 2$, $x \ge 0$, $y \ge 0$. (This region is a quarter of an annulus. On the positive y-axis, arctan(y/x) is assumed to be $\pi/4$, the continuous extension of arctan(y/x) from the right.)

10. Verify (by computing *separately* each side of Green's equation) the general version of Green's Theorem for the annulus *R*:

 $0.01 \le x^2 + y^2 \le 1$, and $\mathbf{F}(x,y) = (-y/(x^2 + y^2))\mathbf{i} + (x/(x^2 + y^2))\mathbf{j}$

- (Make sure that you use the correct orientation of each of the two closed curves that constitute the boundary of R.)
- 11. Using the area version of Green's Theorem, calculate the area of the *folium* of *Descartes*, $x^3 + y^3 = 3xy$, parameterized by $x = 3t/(1+t^3)$, $y = 3t^2/(1+t^3)$, $0 \le t < +\infty$. Begin by drawing the graph of the folium of Descartes.

 (Hughes-Hallett 860/29 CAS Challenge Problem) Let C_a be the circle of radius a, centered at the origin, oriented in the counterclockwise direction, and let

$$\mathbf{F}(x,y) = (-y + (2/3)y^3) \mathbf{i} + (2x - x^3/3 + xy^2) \mathbf{j}.$$

(a) Evaluate the line integral of F over C_a . Determine which positive value of *a* maximizes the value of this line integral.

(b) Use Green's Theorem to convert the line integral to a double integral. Without evaluating the double integral, give a geometric explanation of the value of *a* that you found in part (A).

PARAMETRIC SURFACES

(Answer any two of the following exercises; you will receive extra credit if you solve more than two.)

13. (Without using Mathematica) verify that the astroidal sphere,

 $x^{2/3} + y^{2/3} + z^{2/3} = a^{2/3}$ can be parameterized by:

 $\Phi(\mathbf{u}, \mathbf{v}) = a \sin^3 \mathbf{u} \cos^3 \mathbf{v} \, \mathbf{i} + a \sin^3 \mathbf{u} \sin^3 \mathbf{v} \, \mathbf{j} + a \cos^3 \mathbf{u} \, \mathbf{k} \text{ where } 0 \le \mathbf{u} \le \pi \text{ and}$ $0 \le \mathbf{v} \le 2\pi.$

Now, using Mathematics, graph the astroidal sphere for a few values of a.

14. Graph and find the area of one turn of the *spiral ramp* (or *helicoid*)

 $\Phi(\mathbf{u}, \mathbf{v}) = \mathbf{u} \cos \mathbf{v} \, \mathbf{i} + \mathbf{u} \sin \mathbf{v} \, \mathbf{j} + 2\mathbf{v} \, \mathbf{k}$ where $0 \le \mathbf{u} \le 3$ and $0 \le \mathbf{v} \le 2\pi$.

15. The surface of the dome on a new museum is given by

 $\Phi(\mathbf{u}, \mathbf{v}) = 20 \sin \mathbf{u} \cos \mathbf{v} \, \mathbf{i} + 20 \sin \mathbf{u} \sin \mathbf{v} \, \mathbf{j} + 20 \cos \mathbf{u} \, \mathbf{k}$ where $0 \le \mathbf{u} \le \pi/3$ and $0 \le \mathbf{v} \le 2\pi$ where distance is measured in meters. Graph the dome and find its surface area.

16. Graph the surface given parametrically by:

 $\Phi(u, v) = (3 + (\sin u)(7 - \cos(3u - 2v) - 2\cos(3u + v)))\mathbf{i} + (3 + (\cos u)(7 - \cos(3u - 2v) - 2\cos(3u + v)))\mathbf{j} + \sin(3u - 2v)\mathbf{k} \text{ where} \\ -\pi \le u \le -\pi \text{ and } -\pi \le v \le \pi.$

