Class discussion:   15 February 2019

Chain rules
Review: Clairaut’s theorem, tangent planes
   [image: ]
Review:

1.  (Stewart)  Find the value of   at the point (1, 1, 1) if the equation
xy + z3x – 2yz = 0
defines z as a function of the two independent variables x and y and the partial derivative exists.
2.   Let u(x, y, z) = exp(xy) + z cos x.  Find all nine second-order partial derivatives. 
3. Using Clairaut’s Theorem, compute
(a)   fxyxyxy if f(x,y) = x2 tan(ey + y + y2)
(b)  fxxxyy  if  f(x,y) = x4y3 – y arctan(ln x + sin x)
4. .   (Math 21a, Harvard)   Consider the following four functions:
(a)   f(x, y) = ex cos y;   (b)  f(x, y) = x3 – 3xy2;   
(c)  f(x, t) = exp(–(x + t)2);   (d)  f(x, t) = sin(x – t) + sin (x + t).
Each function above is a solution to one of the four (famous) partial differential equations listed below.  Determine the correspondence. 
Laplace Equation:   fxx + fyy = 0    Wave Equation:   ftt = fxx   
Heat Equation:  ft = fxx                Transport Equation:   ft = fx
5. Find an equation of the tangent plane to each of the following surfaces at the given point:
(a)    z = x + 3y + 7 at P = (1, 2)
(b)    z = y2 – x2   at the origin
(c)    z = ln(x + y) + xey at Q = (1, 0)
(d)  z = sin(3x + 4y)  at the origin
6.     Now we will exploit the fact that the tangent plane is the best linear approximation to a surface at a given point.
(a)   By roughly how much will f(x, y) = x (x2 + y2)1/2 change as one moves from point P = (4, 3) a distance ds = 0.1 unit in the direction of the vector a = 2i – 3j ?   Compare this to the actual value of the change.
(b)  By roughly how much will g(x, y) = ex cos y change as one moves from the origin a distance ds = 0.2 unit in the direction of the vector b = 5i + 12j ?   Compare this to the actual value of the change.
[image: ]
7.  State the special case of the Chain Rule:   f(r(t)
Express this result in terms of the gradient of f.
8.  Compute (d/dt) f(r(t))
(a)   f(x, y) = xy,  r(t) = (et, cos t)
(b)   f(x, y) = exy, r(t) = (3t2, t3)
(c)   f(x, y) = x exp(x2 + y2),  r(t) = (t, -t)
4.   (From Marsden’s Vector Calculus)   Suppose that a swan is swimming in the circle x = cos t and y = sin t and that the water temperature is given by T(x,y) = x2ey – xy3.   Find dT/dt, the rate of change in temperature the swan might experience:   (a) by using the Chain Rule;   (b) by expressing T in terms of t and differentiating.
5.   Using the Chain Rule, find dw/dt where 
w(x,y,z) = x/z + y/z,  x(t) = cos2 t, y(t) = sin2 t, z(t) = 1/t,  t = 3.

6.   Using the gradient, find an equation for the tangent to the ellipse x2/4 + y2 = 2 at the point (-2, 1).
7.   Let z = arc tan (y/x) + 31/2 arc sin(xy/2).  Find the directional derivative of z at P = (1, 1) in the direction of the vector u = 3i – 2 j.
8.   Let z = x2 – xy + y2 – y.   Find the directions u and the values of Duf(1,-1) for which Duf(1,-1).

(a)  is largest 
(b)  is smallest
(c)  = 0
(d)  = -3
(e)   = 4
9.   Find the gradient of f(x, y, z) = 1/(x2 + y2 + z2).  What does this represent geometrically?
10.  Find the tangent plane and normal to the hyperboloid x2 + y2 – z2 = 18  at the point Q = (3, 5, -4)
11.  Charlotte the spider finds herself in a toxic environment.  The toxicity level is give by T(x,y) = 5y2 – xy – 3x3.   If she is located at the point (1, -2), in which direction should Charlotte move to lower the toxicity level most quickly? 
[bookmark: _GoBack]12.   Using the special case of the Chain Rule, find (i) a formula for d/dt ef(t)g(t) and (ii) a formula for f(t)g(t).
13.  Prove each of the following identities:
(a)    (f + g) = f + g
(b)   (cf) = cf  where c is a constant
(c)    (fg) = f g + g f
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