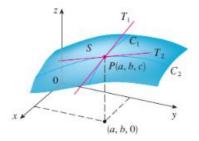
CLASS DISCUSSION: 15 FEBRUARY 2019

CHAIN RULES

REVIEW: CLAIRAUT'S THEOREM, TANGENT PLANES

The partial derivatives of f at (a, b) are the slopes of the tangents to C_1 and C_2 .



Review:

1. (Stewart) Find the value of $\frac{\partial z}{\partial x}$ at the point (1, 1, 1) if the equation $xy + z^3x - 2yz = 0$ defines z as a function of the two independent variables x and y and the partial derivative exists.

- 2. Let $u(x, y, z) = exp(xy) + z \cos x$. Find all nine second-order partial derivatives.
- 3. Using Clairaut's Theorem, compute
 - (a) f_{xyxyxy} if $f(x,y) = x^2 \tan(e^y + y + y^2)$
 - (b) f_{xxxyy} if $f(x,y) = x^4y^3 y \arctan(\ln x + \sin x)$
- 4. . (Math 21a, Harvard) Consider the following four functions:
 - (a) $f(x, y) = e^x \cos y$; (b) $f(x, y) = x^3 3xy^2$;
 - (c) $f(x, t) = \exp(-(x + t)^2)$; (d) $f(x, t) = \sin(x t) + \sin(x + t)$.

Each function above is a solution to one of the four (famous) partial differential equations listed below. Determine the correspondence.

- 5. Find an equation of the *tangent plane* to each of the following surfaces at the given point:
 - (a) z = x + 3y + 7 at P = (1, 2)
 - (b) $z = y^2 x^2$ at the origin
 - (c) $z = \ln(x + y) + xe^{y}$ at Q = (1, 0)
 - (d) z = sin(3x + 4y) at the origin

6. Now we will exploit the fact that the tangent plane is the *best linear approximation* to a surface at a given point.

(a) By *roughly how much* will $f(x, y) = x (x^2 + y^2)^{1/2}$ change as one moves from point P = (4, 3) a distance ds = 0.1 unit in the direction of the vector $\mathbf{a} = 2\mathbf{i} - 3\mathbf{j}$? Compare this to the actual value of the change.

(b) By *roughly how much* will $g(x, y) = e^x \cos y$ change as one moves from the origin a distance ds = 0.2 unit in the direction of the vector $\mathbf{b} = 5\mathbf{i} + 12\mathbf{j}$? Compare this to the actual value of the change.

1, 2, 3, 4, 5 and 6 Find an equation of the tangent plane to the given surface at the specified point.

1.
$$z = 2x^2 + y^2 - 5y$$
, $(1, 2, -4)$
Answer \blacklozenge
2. $z = (x + 2)^2 - 2(y - 1)^2 - 5$, $(2, 3, 3)$
3. $z = e^{x-y}$, $(2, 2, 1)$
Answer \blacklozenge
4. $z = x/y^2$, $(-4, 2, -1)$
5. $z = x \sin (x + y)$, $(-1, 1, 0)$
Answer \blacklozenge

6.
$$z = \ln (x - 2y), (3, 1, 0)$$

- 7. State the special case of the Chain Rule: $\frac{d}{dt}$ f(r(t) Express this result in terms of the gradient of f.
 - 8. Compute $(d/dt) f(\mathbf{r}(t))$

(a)
$$f(x, y) = xy$$
, $r(t) = (e^t, \cos t)$

- (b) $f(x, y) = e^{xy}$, $\mathbf{r}(t) = (3t^2, t^3)$
- (c) $f(x, y) = x \exp(x^2 + y^2)$, r(t) = (t, -t)

4. (From Marsden's **Vector Calculus**) Suppose that a swan is swimming in the circle $x = \cos t$ and $y = \sin t$ and that the water temperature is given by $T(x,y) = x^2e^y - xy^3$. Find dT/dt, the rate of change in temperature the swan might experience: (a) by using the Chain Rule; (b) by expressing *T* in terms of *t* and differentiating. 5. Using the Chain Rule, find dw/dt where

 $w(x,y,z) = x/z + y/z, x(t) = \cos^2 t, y(t) = \sin^2 t, z(t) = 1/t, t = 3.$

6. Using the gradient, find an equation for the tangent to the ellipse $x^2/4 + y^2 = 2$ at the point (-2, 1).

7. Let $z = \arctan(y/x) + 3^{1/2} \arctan(xy/2)$. Find the directional derivative of z at P = (1, 1) in the direction of the vector $\mathbf{u} = 3\mathbf{i} - 2\mathbf{j}$.

8. Let $z = x^2 - xy + y^2 - y$. Find the directions **u** and the values of $D_u f(1,-1)$ for which $D_u f(1,-1)$.

- (a) is largest(b) is smallest(c) = 0
- (d) = -3
- (e) = 4

9. Find the gradient of $f(x, y, z) = 1/(x^2 + y^2 + z^2)$. What does this represent geometrically?

10. Find the *tangent plane* and *normal* to the hyperboloid $x^2 + y^2 - z^2 = 18$ at the point Q = (3, 5, -4)

11. Charlotte the spider finds herself in a toxic environment. The toxicity level is give by $T(x,y) = 5y^2 - xy - 3x^3$. If she is located at the point (1, -2), in which direction should Charlotte move to lower the toxicity level most quickly?

12. Using the special case of the Chain Rule, find (i) a formula for $d/dt e^{f(t)g(t)}$ and (ii) a formula for $f(t)^{g(t)}$.

13. Prove each of the following identities:

- (a) $\nabla(f+g) = \nabla f + \nabla g$
- (b) $\nabla(cf) = c\nabla f$ where *c* is a constant

(c)
$$\nabla(fg) = f \nabla g + g \nabla f$$

(d)
$$\nabla\left(\frac{f}{g}\right) = \frac{g\nabla f - f\nabla g}{g^2}$$
, when $g \neq 0$

