Class discussion:   18 February 2019
Chain rules 
1. Review
Here we exploit the fact that the tangent plane is the best linear approximation to a surface at a given point.
(a)   By roughly how much will f(x, y) = x (x2 + y2)1/2 change as one moves from point P = (4, 3) a distance  in the direction of the vector a = 2i – 3j ?   Compare this to the actual value of the change.
(b)  By roughly how much will g(x, y) = ex cos y change as one moves from the origin a distance  in the direction of the vector b = 5i + 12j ?   Compare this to the actual value of the change.
2. Extend the tangent plane result to a function of 3 variables.
3. (Stewart)
[image: ]  
4. State the special case of the Chain Rule for   f(r(t)).
Express this result in terms of the gradient of f.
5.  Compute  f(r(t)) for each of the following: 
(a)   f(x, y) = xy,  r(t) = (et, cos t)
(b)   f(x, y) = exy, r(t) = (3t2, t3)
(c)   f(x, y) = x exp(x2 + y2),  r(t) = (t, -t)
6.   (From Marsden’s Vector Calculus)   Suppose that a swan is swimming in the circle x = cos t and y = sin t and that the water temperature is given by T(x,y) = x2ey – xy3.   Find , the rate of change in temperature the swan might experience:   (a) by using the Chain Rule;   (b) by expressing T in terms of t and differentiating. [image: ]
7. Stewart:  [image: ]
8. Using the Chain Rule for a function of three variables, find dw/dt where 
w(x, y, z) = x/z + y/z,  x(t) = cos2 t, y(t) = sin2 t, z(t) = 1/t,  t = 3.

9. The second special case of the chain rule:
[image: ]
[image: ]
[image: ]
10.     Using the special case of the Chain Rule, find (i) a formula for ef(t)g(t) and (ii) a formula for f(t)g(t).
11.   Stewart
[image: ][image: ]
 [image: ]

12.     Find dz/dt in two different ways if z = x/y and x = sin t, y = cos t. 
13.     Find dz/dt if z = ln(xy), x = exp(t), y = exp(-t). 
14.    Find dw/dt if w = exp(xyz), x = t, y = t2, z = t3. 
15.   Suppose that the temperature at each point of the plane is given by T = (x2 + y2)1/2.  The position of a bug at time t is given by x = t2, y = t3.  Determine the rate of change of the temperature experienced by the bug as it passes through the point (4, 8). 
16.   Let w = u2ev, u = x/y, v = y ln x.  Find wx and wy at (x, y) = (1, 2). 
17.           If z = (x – y)/(x + y) where x = uvw, y = u2 + v2 + w2, determine zu, zv, zw where u = 2, v = –1, and w = 1. 
18.  If z = y/x, x = eucos v, y = eusin v, determine zu and zv. 
19.    Let u = x exp(yz) and  (x, y, z) = (et, t, sin t).  Find du/dt in two different ways. 
20.     Let f (x, y) be given.  Let x = r cos   and y = r sin .  Find f  and fr. 
21.   Let f (x, y) = xy and x = u2 - v2 and y = u2 + v2.   Find fu and fv. 
22.  Suppose that a duck is swimming in a straight line x = 3 + 8t, y = 3 – 2t in the plane, while the water temperature is given by 
T(x, y) = x2 cos y – y2 sin x.
(Assume that x and y are given in feet, t is given in minutes, and T is given in degrees Fahrenheit.)  Find dT/dt. 
23. Suppose that the temperature at (x, y, z) in 3-space is given by T(x, y, z) = x2 + y2 + z2.   
Assume that a particle moves along a right circular helix (t) = (cos t, sin t, t).   Let T(t) be its temperature at time t. 
(a)   Find dT/dt. 
(b)  Find an approximate value for the temperature at t = /2 + 0.01. 
24. [bookmark: _GoBack]Let f (x,y) = xy + (x + 3y)2.   Find fxx, fyy, fxy, and fyx. 
25.  Let g(x, y) = sin x sin2 y.   Find all four second-order partial derivatives. 
26. Let u(x, y, z) = exp(xy) + z cos x.  Find all nine second-order partial derivatives. 
27.   Let g(x, y) = 2xy / (x2 + y2)2.   Find all four second-order partial derivatives. 
28.    Let w(x, y) = exp(–xy2) + y3x4.   Find all four second-order partial derivatives.
29.   (Thomas) The lengths a, b, c of the edges of a rectangular box are changing with time.  At the instant in question, a = 1 in, b = 3 in, c = 4 in, da/dt = db/dt = 3 in/sec, dc/dt = -2 in/sec.  At what rates are the box’s volume V and surface area S changing at that instant?  Are the box’s main diagonals increasing or decreasing in length?
30.   (Thomas) Suppose that the partial derivatives of a function f(x, y, z) at points on the helix x = cos t, y = sin t, z = t are given by 
fx = cos t, fy = sin t, fz = t2 + t – 2.
At which points on the helix, if any, can f assume extreme values?
31.  (Thomas)               Let T = f(x,y) be the temperature at the point (x, y) on the circle x = cos t, y = sin t, 0 ≤ t ≤ 2 and suppose that Tx = 8x – 4y, Ty = 8y – 4x.
(a)   Find the maximum and minimum temperatures on the circle by examining dT/dt and d2T/dt2.
(b)    Given that T = 4x2 – 4xy + 4y2, find the max and min values of T on the circle.  [image: ]
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