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4.  Review best quadratic approximation to a function f(x, y) at a point P = (a, b).
5.  Find and classify all critical points of the function  f(x, y) = x2y – 2xy2 + 3xy + 4.

6.  Find the global max and global min of f(x, y) = x2 +xy + y2 over the square [-1, 1]×[1, 1].

7.  Find three positive numbers whose sum is 100 and whose product is maximum.

8. 
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II 
By parameterizing the boundary and using the second derivative test on the interior of the given domain, find the global extrema (if such exist) of:
(a) (S. Colley, Vector Calculus)  Let f(x, y) = x2 – xy + y2 + 1 on the closed square, S, given by [-1, 2]  [-1, 2].  (Hint:  There will be one critical point in the interior of S and 8 critical points of f restricted to the boundary of S.
(b)  F(x, y) = 2x2 + y2 – 4x – 2y + 3 on the rectangle R defined by 0 ≤ x ≤ 3, 0 ≤ y ≤ 2.
(c)   H(x, y) = y – x2 on the region whose boundary is a triangle with vertices (0, 0), (2, 0), (0, 2).
(d)   f(x, y) = x2 + y2 – x – y + 1 on the disc x2 + y2 ≤ 1.
(e)   g(x, y) = sin x + cos y  on the rectangle R defined by 0 ≤ x ≤ 2, 0 ≤ y ≤ 2.
(f)   F(x, y) = xy on the rectangle R defined by -1 ≤ x ≤ 1, -1 ≤ y ≤ 1.
(g)   G(x, y) = x2 + 4y2 on the disc x2 + y2 ≤ 1.
 
Next time:   LaGrange multipliers
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54. A rectangular building is being designed to minimize heat loss. The east and west walls.
lose heat at a rate of 10 units/m? per day, the north and south walls at a rate of 8 units/m?
per day, the floor at a rate of 1 unit/m? per day, and the roof at a rate of § units/m? per day.
Each wall must be at least 30 m long, the height must be at least 4 m, and the volume must
e exactly 4000 m’.

a. Find and sketch the domain of the heat loss as a function of the lengths of the sides.

b. Find the dimensions that minimize heat loss. (Check both the critical points and the
‘points on the boundary of the domain.)

<. Could you design a building with even less heat loss if the restrictions on the lengths
of the walls were removed?

55. 1f the length of the diagonal of a rectangular box must be L, what is the largest possible
volume?
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1. Suppose (1,1) is a critical point of a function f with continuous second derivatives. In each
case, what can you say about f?

a fer (L) =4 fr (L) =1 fig (L1) =
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b fex (1,1) =4, £y (1L,1) =3, fyy (1L1) =2
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Suppose (0, 2) is a critical point of a function g with continuous second derivatives. In each
case, what can you say about g?

2 952 (0,2) = —1. g (0,2)

) g (0,2) =1
b g (0,2) = =1, 62y (0,2) =2, (0,2) = =8
6.0/(0,2) =

3,4 Use the level curves in the figure to predict the location of the critical points of f and

€ 9z (0,2) =4, gy (0,2)

whether f has a saddle point or a local maximum or minimum at each critical point.

Explain your reasoning. The

use the Second Derivatives Test to confirm your predictions.

f@y) =4+28+4% — 3oy
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Show that £ (z,y) = @ +4y* — 4zy + 2 has an infinite number of critical points and that
D =02t each one. Then show that  has a local (and absolute) minimum at each critical
point.

Show that £ (z,y) = z?ye™~¥ has maximum values at (41,1//2) and minimum values at
(1, -1/+/2). Show also that f has infinitely many other critical points and D = 0 at each of

them. Which of them give rise to maximum values? Minimum values? Saddle points?
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31,32, 33, 34, 35, 36, 37 and 38 Find the absolute maximum and minimum values of f on the set D

3L f(z,y) = 2> +1* — 2z, D is the closed triangular region with vertices (2,0), (0, 2), and (0, -2)
[Answer 4]

32. f(w,y) = 2 +y — =y, D is the closed triangular region with vertices (0, 0), (0, 2), and (4, 0)

8. flay) =+ Py 4,

= {9l <Ll <1}
(answer#)

34 fmy) ==’ +ay+1* — 6y, D={(z,9) | -3<=<3,0<y<5}

B fley) =2+ - 20— 49y+1,D={(2,9)|0<2<2,0<y< 3}
(answer )

36. f(z.3) = 2%, D={(z,9) |22 0,y > 0,2 +4* <3}

3 f(z,9) =228 +9', D={(z,) |2 +¥* <1}
(answer +]

38 f(2,9)
and (-2, -2)

3z~ + 12y, D is the quadrilateral whose vertices are (~2,3), (2,3), (2,2),
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