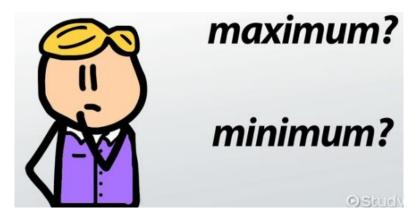
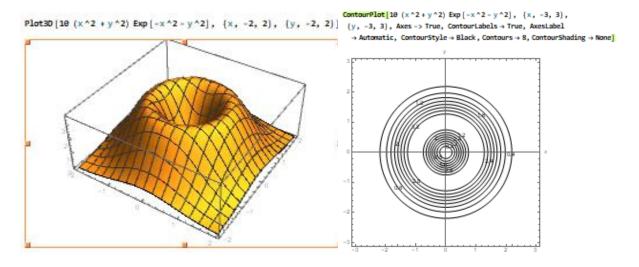
MATH 263 CLASS DISCUSSION 1 MARCH 2019

GLOBAL EXTREMA, COMPACTNESS



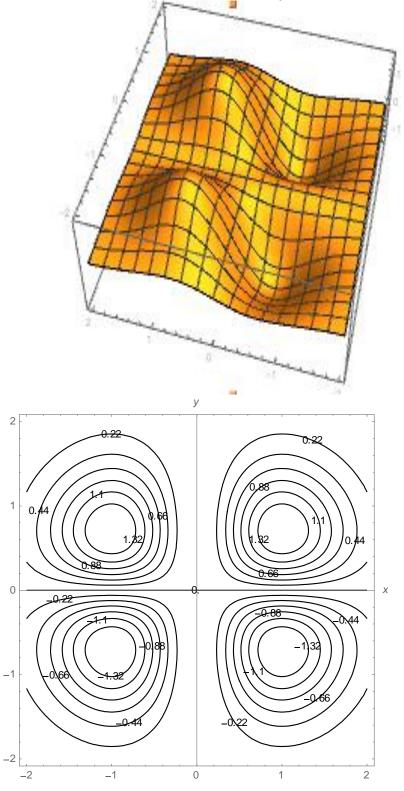
1. Review: Show that the critical points of the "volcano" $y = 10(x^2 + y^2)e^{-(x^2 + y^2)}$ occur at (0, 0) and on the circle $x^2 + y^2 = 1$.



2. Review: Show that $y = 10 x^2 y e^{-(x^2 + y^2)}$ has maximum values at $\left(\pm 1, \frac{1}{\sqrt{2}}\right)$ and minimum values at $\left(\pm 1, -\frac{1}{\sqrt{2}}\right)$. Show also that f has infinitely many other critical points and D = 0 at each of them. Which of them give rise to maximum values? Minimum values? Saddle points?

Plot3D[$10x^2y$ Exp[$-x^2 - y^2$], {x, -2,2}, {y, -2,2}]

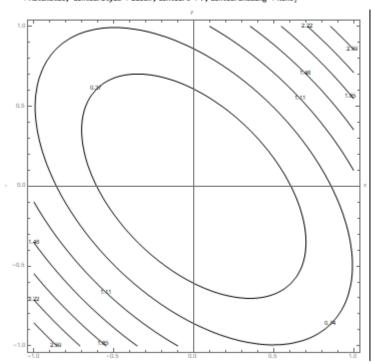
$$\label{eq:contourPlot} \begin{split} &\text{ContourPlot}[10x^2y\text{Exp}[-x^2-y^2], \{x,-2,2\}, \{y,-2,2\}, \text{Axes}{-}{>} \text{True, ContourLabels} \rightarrow \\ &\text{True, AxesLabel} \rightarrow \text{Automatic, ContourStyleBlack, ContoursContourShading} \rightarrow \text{None}] \end{split}$$



Compact Domains

- **4.** What does it mean for a subset of \mathbb{R}^2 (or of \mathbb{R}^3) to be open? closed? bounded? compact? What is meant by the boundary of a set S? This will be represented by the symbol ∂S .
- 5. State the Compactness Theorem for continuous functions.
- 6. Find the global max and global min of $f(x, y) = x^2 + xy + y^2$ over the square $[-1, 1] \times [1, 1]$.

ContourPlot[x^2+xy+y^2, {x, -1, 1}, {y, -1, 1}, Axes-> True, ContourLabels → True, AxesLabel
 → Automatic, ContourStyle → Black, Contours → 7, ContourShading → None)



- 7. Find three positive numbers whose sum is 100 and whose product is maximum.
- 8. In each of the following exercises (31 38) from Stewart, find the global max and min values of f on the compact set D.
 - 31. $f(x, y) = x^2 + y^2 2x$, D is the closed triangular region with vertices (2, 0), (0, 2), and (0, -2)Answer \blacksquare
 - 32. f(x,y) = x + y xy, D is the closed triangular region with vertices (0,0), (0,2), and (4,0)
 - 33. $f(x, y) = x^2 + y^2 + x^2y + 4$, $D = \{(x, y) \mid |x| \le 1, |y| \le 1\}$
 - 35. $f(x, y) = x^2 + 2y^2 2x 4y + 1$, $D = \{(x, y) \mid 0 \le x \le 2, 0 \le y \le 3\}$

36.
$$f(x,y) = xy^2$$
, $D = \{(x,y) \mid x \geqslant 0, y \geqslant 0, x^2 + y^2 \leqslant 3\}$

37. $f(x,y) = 2x^3 + y^4$, $D = \{(x,y) \mid x^2 + y^2 \leqslant 1\}$

Answer \clubsuit

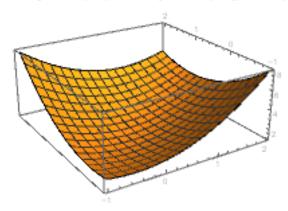
38. $f(x,y) = x^3 - 3x - y^3 + 12y$, D is the quadrilateral whose vertices are $(-2,3)$, $(2,3)$, $(2,2)$, and $(-2,-2)$

9.

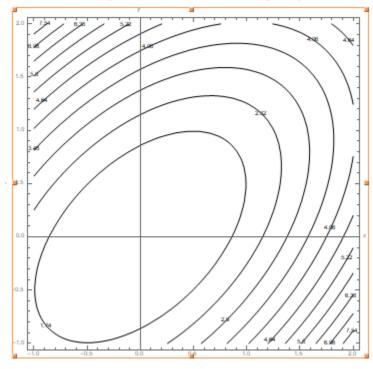
A rectangular building is being designed to minimize heat loss. The east and west walls lose heat at a rate of 10 units/m^2 per day, the north and south walls at a rate of 8 units/m^2 per day, the floor at a rate of 1 unit/m^2 per day, and the roof at a rate of 5 units/m^2 per day. Each wall must be at least 30 m long, the height must be at least 4 m, and the volume must be exactly 4000 m^3 .

- a. Find and sketch the domain of the heat loss as a function of the lengths of the sides.
- b. Find the dimensions that minimize heat loss. (Check both the critical points and the points on the boundary of the domain.)
- c. Could you design a building with even less heat loss if the restrictions on the lengths of the walls were removed?
- 10. If the length of the main diagonal of a rectangular box must be L, what is the largest possible volume of the box?
- 11. By parameterizing the boundary and using the second derivative test on the interior of the given domain, find the global extrema (if such exist) of:
 - (a) (S. Colley, **Vector Calculus**) Let $f(x, y) = x^2 xy + y^2 + 1$ on the closed square, S, given by $[-1, 2] \times [-1, 2]$. (*Hint*: There will be one critical point in the interior of S and 8 critical points of f restricted to the boundary of S.

Plot30 [$x^2 - xy + y^2 + 1$, {x, -1, 2}, {y, -1, 2}]



ContourPlot[x^2 - x y + y^2 + 1, {x, -1, 2}, {y, -1, 2}, Axes -> True, ContourLabels → True, AxesLabel
 → Automatic, ContourStyle → Black, Contours → 11, ContourShading → None]



- **(b)** $F(x, y) = 2x^2 + y^2 4x 2y + 3$ on the rectangle *R* defined by $0 \le x \le 3$, $0 \le y \le 2$.
- (c) $H(x, y) = y x^2$ on the region whose boundary is a triangle with vertices (0, 0), (2, 0), (0, 2).
- (d) $f(x, y) = x^2 + y^2 x y + 1$ on the disc $x^2 + y^2 \le 1$.
- (e) $g(x, y) = \sin x + \cos y$ on the rectangle R defined by $0 \le x \le 2\pi$, $0 \le y \le 2\pi$.
- (f) F(x, y) = xy on the rectangle R defined by $-1 \le x \le 1$, $-1 \le y \le 1$.
- (g) $G(x, y) = x^2 + 4y^2$ on the disc $x^2 + y^2 \le 1$.