Double Integrals over rectangles
Fubini’s theorem
13 March 2019
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1. (a) Using the following contour diagram, estimate the volume beneath the surface z = 2y and above the rectangle R = [0, 3] [0, 3] in the xy-plane.

[image: ]
(b)   Using a double integral, compute the exact value of this volume.



2. (a)  Using the following contour diagram, estimate the volume beneath the surface  z = x + 2y and above the rectangle R = [0, 4][0, 3] in the xy-plane.
[image: ]
(b)   Using a double integral, compute the exact value of this volume.
3. 
(a)  Using the following contour diagram, estimate the volume beneath the surface  
z = x sin(3x2) cos y and above the rectangle R = [0.4, 1] [-1.5, 1.5] in the xy-plane. 
[image: ]
(b)   Using a double integral, compute the exact value of this volume.

4.  (a) Using the following contour diagram, estimate the volume beneath the surface  
z = 7 – x2 – y3 + x and above the rectangle R = [-2, 3] [-2, 2] in the xy-plane. 

[image: ]
 (b)   Using a double integral, compute the exact value of this volume.

5. Calculate under and over-estimates of the double integral
6. 
 
Using the table of values to the right, where R is the rectangle [0, 6] × [0, 4]. [image: ]
[image: ]                     [image: ]

6.    For the following iterated integral, sketch the region of integration and evaluate the integral.


7.    Evaluate each of the following iterated integrals.  What is their relationship to one another?


                                        

8.   If D is a rectangular plate defined by 1  x  2, 0  y  1 (measured in cm.), and its mass density is given by (x,y) = yexy grams per square cm, integrate  over D to find the mass of the plate. 

9.   Find the volume of the region bounded above by the paraboloid z = x2 + y2 and below by the square S: -1  x  1, -1  y   1.

10.   Find the volume of the region bounded above by the plane z = 2 – x – y  and below by the square S: 0  x  1, 0  y   1.
11.  (Hughes-Hallett)
12. [image: ][image: ]
[image: ]



[image: ]
Guido Fubini (1879 – 1943)






[bookmark: _GoBack]

After years of finding mathematics easy, I finally reached integral calculus and came up against a barrier.  I realized that this was as far as I could go, and to this day I have never successfully gone beyond it in any but the most superficial way. 
- Isaac Asimov
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1. (a) Using the following contour diagram, estimate the volume beneath the surface z = 2y and above 

the rectangle R = [0, 3] [0, 3] in the xy-plane. 

 

 (b)   Using a double integral, compute the exact value of this volume. 

 

 

 

2. (a)  Using the following contour diagram, estimate the volume beneath the surface  z = x + 2y and 

above the rectangle R = [0, 4][0, 3] in the xy-plane. 

