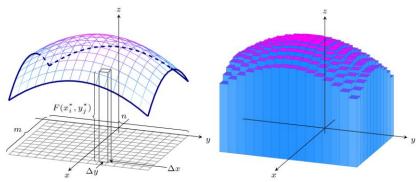
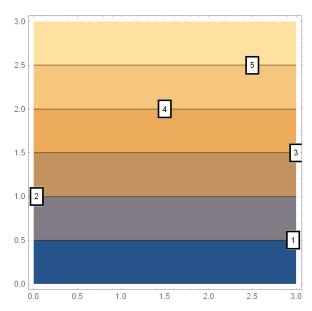
DOUBLE INTEGRALS OVER RECTANGLES FUBINI'S THEOREM

13 March 2019

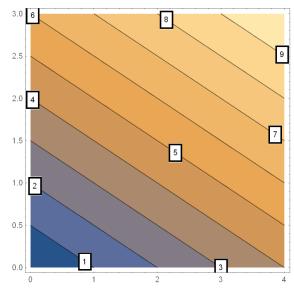


1. (a) Using the following contour diagram, *estimate* the volume beneath the surface z = 2y and above the rectangle $R = [0, 3] \times [0, 3]$ in the xy-plane.



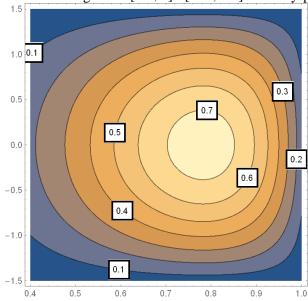
(b) Using a double integral, compute the *exact* value of this volume.

2. (a) Using the following contour diagram, estimate the volume beneath the surface z = x + 2y and above the rectangle $R = [0, 4] \times [0, 3]$ in the xy-plane.



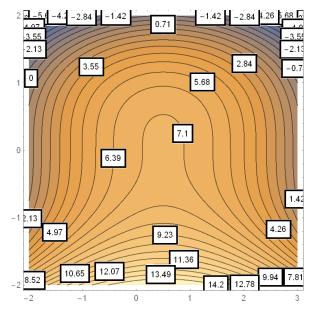
(b) Using a double integral, compute the exact value of this volume.

3. (a) Using the following contour diagram, estimate the volume beneath the surface $z = x \sin(3x^2) \cos y$ and above the rectangle $R = [0.4, 1] \times [-1.5, 1.5]$ in the xy-plane.



(b) Using a double integral, compute the *exact* value of this volume.

4. (a) Using the following contour diagram, estimate the volume beneath the surface $z = 7 - x^2 - y^3 + x$ and above the rectangle $R = [-2, 3] \times [-2, 2]$ in the xy-plane.



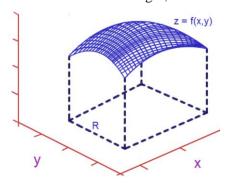
- (b) Using a double integral, compute the exact value of this volume.
- 5. Calculate *under* and *over*-estimates of the double integral

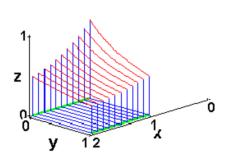
$$\iint\limits_R f(x,y)\,dA$$

6.

y\	0	3	6
0	2	3	4
2	6	4	3
4	18	15	12

Using the table of values to the right, where **R** is the rectangle $[0, 6] \times [0, 4]$.





6. For the following iterated integral, sketch the region of integration and evaluate the integral.

$$\int_{0}^{\frac{\pi}{2}} \left(\int_{0}^{\pi} (\sin x + \cos y) \, dx \right) dy$$

7. Evaluate each of the following iterated integrals. What is their relationship to one another?

(a)
$$\int_{1}^{2} \left(\int_{0}^{1} xye^{x} dy \right) dx$$

$$(b) \int_{0}^{1} \left(\int_{1}^{2} xye^{x} dx \right) dy$$

- 8. If *D* is a rectangular plate defined by $1 \le x \le 2$, $0 \le y \le 1$ (measured in cm.), and its mass density is given by $\delta(x,y) = ye^{xy}$ grams per square cm, integrate δ over *D* to find the *mass* of the plate.
- 9. Find the *volume* of the region bounded above by the paraboloid $z = x^2 + y^2$ and below by the square S: $-1 \le x \le 1$, $-1 \le y \le 1$.
- 10. Find the *volume* of the region bounded above by the plane z = 2 x y and below by the square **S**: $0 \le x \le 1, 0 \le y \le 1$.
- 11. (Hughes-Hallett)

Let R be the region $0 \le x \le 20$, $0 \le y \le 40$. The function f(x, y) represents the performance index of a machine; its values range from 0 to 1. Use the grid in Figure 16.1, which is a contour map of f, to make upper and lower estimates of

$$I = \int_{R} f(x, y) dA.$$

12.

The integral $\int_0^1 \int_0^1 x^2 dx dy$ represents the

- (a) Area under the curve $y = x^2$ between x = 0 and x = 1.
- (b) Volume under the surface $z=x^2$ above the square $0 \le x,y \le 1$ on the xy-plane.
- (c) Area under the curve $y = x^2$ above the square $0 \le x, y \le 1$ on the xy-plane.

Guido Fubini (1879 – 1943)

After years of finding mathematics easy, I finally reached integral calculus and came up against a barrier. I realized that this was as far as I could go, and to this day I have never successfully gone beyond it in any but the most superficial way.