Class discussion:    18 March 2019
double & Iterated Integrals: Fubini’s THeorem
[image: ]  
Cavalieri's Principle

1.  (a) Compute the volume of the solid bounded by the graph z = x3 + 3y, the rectangle 
R = [0, 1] [1, 2] and the “vertical sides” of R. 
[image: ]


[image: ]
(c)  Evaluate the following integral and sketch the corresponding region of integration.


      What does this integral represent?
2. Using a double integral, find the area of an ellipse with semi-axes of length a and b.

3. Evaluate   where   by writing it as an iterated integral where:
(a)  We use horizontal slices
(b)  We use vertical slices

4. Evaluate   where T is the triangle with vertices (0, 0), (2, 0), and (2, 1).
[image: ]
5. [Stewart]  Evaluate each of the following double integrals (using geometry or symmetry without actually integrating):

 (a)    where R = [-2, 5][-8, 3]

(b)    where D is the disk with center at the origin and radius R.   

6. Evaluate each of the following double integrals by converting it to an iterated integral:

(a)    where R = [0, 1][0, 1]

 (b)     where R = [0, ][0, 1]

(c)     where R = [0, ][0, 1]]

(d)      where R = [0, ][0, 1]
7. Compute the volume of each of the following regions:
(a)   Beneath the saddle z = xy and above the unit square [0, ][0, 1]
(b)   Beneath the paraboloid z = x2 + y2 and above the rectangle [-1, ][0, 1]
(c)   Bounded by the surface z = sin y, the planes x = 1, x = 0, y = 0, y = /2 and the xy-plane.
(d)    Beneath the surface z = x2 + y and above the rectangle [0, ][1, 2]
8. Compute the average temperature over the given plate: 
(a)   T(x, y) = x + 11;   R = [0, 3][-4, 1]
(b)  T(x, y) = xy;  R = the triangle with vertices (0, 0), (1, 0) and (1, 3)
(c)   T(x, y) = x sin y;  R = region enclosed by the curves y = 0, y = x2, and x = 1
(d)    T(x, y) = y/(1 + x2);    R = [0, ][0, 2]
(e)    T(x, y) = y ln x – 5;   R = [1, e][1/e, 1]
9.     Find the mass of each of the following metallic sheets given the density function:
(a)   (x, y) = x2y3 kg/cm2;  R = [0, 2][0, 4]
(b)    (x, y) = x ex+y g/cm2;  R = [0, 2][0, 9]
(c)    (x, y) = x sin2 y lb/ft2 ;  R = [1, 3][1, 9]
10. Evaluate each of the following double integrals over the given region.  Begin by sketching the region of integration. Identify whether the region is x-simple, y-simple, or neither.












11.   Evaluate each of the following iterated integrals by reversing the order of integration.  (The first step is to identify the region of integration!)

  
















[bookmark: _GoBack][image: Résultats de recherche d'images pour « gilbert and sullivan postage stamps »]




I'm very good at integral and differential calculus, I know the scientific names of beings animalculous; In short, in matters vegetable, animal, and mineral, I am the very model of a modern Major-General. 
                      - Gilbert, W. S. (1836 - 1911) The Pirates of Penzance 
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(c)  Evaluate the following integral and sketch the corresponding region of integration.
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(c)  Evaluate the following integral and sketch the corresponding region of integration. 



1

00

2

1

x

dxdy

 

